
UNIVERSITÄT LINZ
JOHANNES KEPLER JKU

Technisch-Naturwissenschaftliche
Fakultät

Efficient Rewriting by Object Reuse and
Compiling

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplomingenieur

im Masterstudium

Computermathematik

Eingereicht von:

Alexander Maletzky

Angefertigt am:

Research Institute for Symbolic Computation - RISC

Beurteilung:

A.Univ.-Prof. Dr. Tudor Jebelean

Linz, Mai 2013

Eidesstattliche Erklärung
Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel
nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche
kenntlich gemacht habe.
Die vorliegende Masterarbeit ist mit dem elektronisch übermittelten Textdoku-
ment identisch.

Linz, im Mai 2013

Abstract
During the process of rewriting expressions (terms/formulae), subexpressions have
to be replaced by other expressions all the time. Therefore it is of particular interest
to make these subsequent replacements as efficient as possible in order to speed-up
the entire process. This master’s thesis pursues a new approach that was raised
by the thesis supervisor for achieving precisely the mentioned increase in efficiency
in connection with “replacing expressions by expressions” by working out all the
subtle details that have to be taken into account and by implementing various
programs (one interpreter, two compilers) that make use of the new approach.

The main idea is the following: Assume you are given an expression, represented
as a tree, and a rewrite rule that is applicable to the expression/tree. Then, tra-
ditionally, when applying the rule the entire right-hand-side of the rule is created
(with the variables instantiated properly), and the entire old expression is deleted.
Although in principle this works pretty fine, it can be made much more efficient:
Instead of creating the entire right-hand-side and deleting the entire expression,
simply reuse all the objects that are already available in the expression and that are
needed in the right-hand-side of the rule by moving them to new positions. This
idea, as already pointed out above, is due to the thesis supervisor, Prof. Tudor Je-
belean, and as it turns out, the new approach is indeed much more efficient w. r. t.
time, as lots of timing experiments show. These experiments, which of course are
presented in this document, are mainly built upon small to medium-size sets of
rewrite-rules in the domains of adding/multiplying integers/polynomials and prov-
ing/disproving propositional formulae. However, not only is the old, constructive
way of rewriting compared to the new, destructive one, but the different programs
that have been implemented are compared to each other as well.

The implementation of the programs was done in the programming language
C++, where heavy use was made of pointers, inheritance and type polymorphism.
Clearly, this document does not only cover all important and subtle aspects of the
algorithms and the implementation, but also contains detailed information on how
the programs can be used. In fact, there are three different programs, namely an
interpreter (Version 1) and two compilers (Versions 2 and 3), each capable of solv-
ing “real” rewriting tasks, such as adding Integers or proving/disproving formulae
in propositional logic. The interpreter reads a set of rewrite rules and is imme-
diately ready to solve rewriting tasks, without creating intermediate output that
has to be compiled first by external compilers. This is in contrast to the other two
programs, which first create intermediate C++ source- and header files that im-
plement precisely the program that is capable of solving the rewriting tasks in the
domain of the given rule set. Here, Version 3 does exactly the same as Version 2,
but unlike Version 2 it can also deal with so-called sequence variables.

Zusammenfassung
Wird ein Ausdruck (beispielsweise ein Term order eine Formel) im Zuge eines
Rewriting-Prozesses transformiert, so geschieht dies durch sukzessives Ersetzen von
Teilausdrücken durch andere Ausdrücke. Deshalb ist es von Interesse, das Erset-
zen von Ausdrücken möglichst effizient zu gestalten, um den gesamten Rewriting-
Prozess zu beschleunigen. Die vorliegende Arbeit verfolgt einen neuen Ansatz,
der vom Betreuer der Arbeit stammt, und dessen Ziel es ist, genau jene Effizien-
zsteigerung in Verbing mit dem Ersetzen von Ausdrücken zu erreichen. Dabei
wurden nicht nur sämtliche subtilen Details, die berücksichtigt werden müssen,
ausgearbeitet, sondern auch verschiedene Computerprogramme (einen Interpreter,
zwei Compiler), die auf dem neuen Ansatz aufbauen, implementiert.

Diese Idee lautet wie folgt: Gegeben seien ein (syntaktischer) Ausdruck, repräsen-
tiert durch eine Baum-Struktur, und eine Rewrite-Regel, die darauf angewendet
werden kann. Wenn die Regel angewendet wird, so wird normalerweise ihre kom-
plette rechte Seite neu erzeugt (wobei die Variablen natürlich entsprechend in-
stanziert werden), und der komplette “alte” Ausdruck wird gelöscht. Obwohl
diese Vorgehensweise im Prinzip gut funktioniert, kann ihre Effizienz doch grundle-
gend gesteigert werden: Anstatt die komplette rechte Seite zu erzeugen und den
kompletten Ausdruck zu löschen, verwende alle Objekte, die bereits im Ausdruck
verfügbar sind und in der rechten Seite der Regel benötigt werden, indem sie ein-
fach an neue Positionen gesetzt werden. Wie sich herausstellt ist dieser Ansatz,
der vom Betreuer dieser Arbeit, Prof. Tudor Jebelean, stammt, tatsächlich viel
effizienter was die Rechenzeit anbelangt, wie einige Experimente zeigen. Diese Ex-
perimente, die sebstverständlich im vorliegenden Dokument präsentiert werden,
basieren hauptsächlich auf kleinen bis mittelgroßen Mengen von Rewrite-Regeln
in den Bereichen Addition/Multiplikation von ganzen Zahlen/Polynomen und Be-
weisen von aussagenlogischen Formeln. Allerdings werden dabei nicht nur die alte,
konstruktive Methode mit der neuen, destruktiven Methode verglichen, sondern
auch die verschiedenen Programme untereinander.

Die Implementierung dieser Programme erfolgte in der Programmiersprache C++,
wo starker Gebrauch von Zeigern, Vererbung und Typ-Polymorphismus gemacht
wurde. Klarerweise behandelt dieses Dokument nicht nur alle wichtigen Aspekte
der Algorithmen und der Implementierung, sondern gibt auch Aufschluss darüber,
wie die Programme genutzt werden können. Tatsächlich gibt es drei verschiedene
Programme, nämlich einen Interpreter und zwei Compiler, wobei jedes von ihnen in
der Lage ist, “echte” Rewriting-Aufgaben zu lösen. Der Unterschied zwischen dem
Interpreter und den beiden Compilern liegt offensichtlich darin, dass letztere Men-
gen von Rewrite-Regeln zuerst in ausführbare Programme umwandeln, wohingegen
ersterer sofort mit den gegebenen Regeln arbeiten kann.

Acknowledgements
First of all, I want to thank Prof. Tudor Jebelean for giving me the opportunity to
write my master’s thesis under his guidance. It was him who raised my interest in
mathematical logic and automated proving, as well as rewriting, and I also want to
mention that he came up with many good ideas that helped me a lot in improving
this thesis (not to forget the basic new idea this thesis is all about). Thank you
very much!

I am also grateful for participating in the Theorema seminar of the Research Insti-
tute for Symbolic Computation: Thanks for many interseting talks and presenta-
tions to all members of the Theorema group! In particular, thanks to Prof. Bruno
Buchberger, who allowed me to continue my life at the university by accepting me
as his new PhD student.

And last but not least I am of course also very thankful for my family and their
support, day in, day out. It is hard to express how much I am indebted to them.

Contents

1 Introduction 10
1.1 Maude . 12

2 Basic Definitions 14
2.1 Formal Definition of Rewriting . 14
2.2 Expressions . 16

2.2.1 Subexpressions . 18
2.2.2 Position of Objects . 18

2.3 Integers and Natural Numbers . 19
2.4 Rewrite Rules . 21
2.5 Rule Sets . 22
2.6 Sequence Variables . 23
2.7 Trees . 24
2.8 Mappings . 26

2.8.1 Type- and Arity Preserving Mappings 27
2.8.2 The Notation of Mappings 29
2.8.3 The Number of Mappings 30

3 General Implementation Documentation 32
3.1 Symbols . 32
3.2 Implementation of Trees . 33

3.2.1 Class Expression . 34
3.2.2 Class Constant . 34
3.2.3 Class Function . 34
3.2.4 Class Variable . 34

3.3 Implementation of Rules . 35
3.4 Parsing Expressions and Rules . 35
3.5 Rule-Application Strategy . 37

4 Version 1: The Interpreter 40

6

CONTENTS 7

4.1 Algorithms and Implementation . 40
4.1.1 Implementation Details . 41
4.1.2 Loading and Storing a Rule 42
4.1.3 The Matching Algorithm . 44
4.1.4 The Rewriting Algorithm 45

4.2 How To Use “Interpreter” . 47
4.2.1 General Overview . 48
4.2.2 Input Files . 48

4.3 An Example . 49
4.3.1 Step 1: Creating References 50
4.3.2 Step 2: Copying the rhs-Tree 51
4.3.3 Step 3: Deleting Unused Vertices 54

5 Version 2: The Compiler 55
5.1 Implementation of the Compiled Programs 56
5.2 Algorithms and Implementation of the Compiler 57

5.2.1 Class Rule . 58
5.2.2 Constructing Function match 59
5.2.3 Commands . 60
5.2.4 Constructing Function rewrite 64

5.3 How To Use “Compiler” . 72
5.4 An Example . 73

6 Version 3: The Compiler with Sequence Variables 82
6.1 Implementation of the Compiled Programs 83
6.2 Algorithms and Implementation of the Compiler 84

6.2.1 Commands . 85
6.2.2 Constructing Function match 94
6.2.3 Constructing Function rewrite 103

6.3 How To Use “Compiler/SV” . 108
6.4 An Example . 109

7 Tests And Timing Experiments 115
7.1 Comparing the Different Versions 116

7.1.1 General Parameter Settings 116
7.1.2 Rule Set Addition . 117
7.1.3 Rule Set Multiplication 117
7.1.4 Rule Set NatAddition . 118
7.1.5 Rule Set NatMultiplication 119
7.1.6 Rule Set NatSum . 119

CONTENTS 8

7.1.7 Rule Set PolyAddition . 120
7.1.8 Rule Set SequentCalculus 121
7.1.9 Summary . 121

7.2 Comparing Old (Constructive) and New (Destructive) Concept . . . 122
7.2.1 General Parameter Settings 122
7.2.2 Rule 1 . 124
7.2.3 Rule 2 . 124
7.2.4 Rule 3 . 125
7.2.5 Rule 4 . 125
7.2.6 Rule 5 . 126
7.2.7 Summary . 126

7.3 Comparing “Compiler/SV” to Mathematica 127

8 Conclusion 129
8.1 Complexity Analysis . 130

8.1.1 Arity Preserving . 131
8.1.2 Type Preserving . 132
8.1.3 Complexity: Conclusion . 132

8.2 Future Work . 133
8.2.1 Program Features . 133
8.2.2 Implementation . 134

A Special commands 136
A.1 Closing the Program . 136
A.2 Maximum Number of Rewriting Steps 136
A.3 Rewriting the previous Result . 137
A.4 Integers and Natural Numbers . 137
A.5 Tracing the Rewriting Process . 137
A.6 Rewriting Strategy . 138
A.7 Rewriting an Input File . 138
A.8 Rewriting Algorithm* . 138
A.9 Performing Timing Experiments . 139
A.10 Printing all Symbols . 140
A.11 Printing all Constants* . 140
A.12 Printing all Rule Sets* . 140
A.13 Printing all Rules* . 140
A.14 Printing a single Rule* . 141

B Rule Sets 142

CONTENTS 9

B.1 Addition . 142
B.2 Multiplication . 143
B.3 NatAddition . 145
B.4 NatMultiplication . 145
B.5 NatSum . 145
B.6 PolyAddition . 145
B.7 Sorting . 146
B.8 SequentCalculus . 146
B.9 SC . 148

Chapter 1

Introduction

Generally speaking, rewriting is the art of transforming objects of any kind into
other objects. Those objects could be, for instance, states of systems, logical for-
mulae, mathematical expressions, or anything else. The way they are transformed
is by applying so-called rewrite rules, which are rules that specify how an object
of a certain class may be transformed into another object. For example, there
could be a rule that specifies that every mathematical expression (object) of the
form (a + b)2, where a and b are arbitrary expressions, may be transformed into
a2 + 2ab+ b2. The emphasis is on the word may: If such a rule exists, then it is in
general not guaranteed that it really is applied; There might be another rule which
is applicable, too. A much more formal definition of rewriting can be found in Sec-
tion 2.1. Please note that throughout the whole thesis the objects that are taken
into account as in- and outputs of a rewriting process are arbitrary expressions,
formally defined in Section 2.2.

From the above, intuitive definition it should be quite clear that a rewriting pro-
cess, i. e. the successive application of rewrite rules, can not only be carried out
by humans, but also completely automatically by computer systems, at least if
some basic conditions are met (which is the case when rewriting expressions). A
rewriting system is a program that does exactly this job. More formally, it is a
method that takes as an input the object Oin that should be rewritten, together
with a set of rewrite rules, and produces again an object Oout as the output. Oout

is related to Oin in the following way: It can be obtained by successively applying
rewrite rules to Oin, and there is no rule that can be applied to Oout any more (i. e.
Oout is in normal form). This, however, leads to some problems: First of all, Oout

is in general not unique. As already pointed out, at each stage, there might be
several rules that could be applied, and depending on the one which is eventually
chosen, the final results may differ. Secondly, it is not guaranteed that the method

10

1 Introduction 11

terminates; A normal form does not have to exist in general. See, for instance,
[15, 4] for more information on uniqueness/termination.

Let us now restrict ourselves to the case when it is expressions that are rewritten.
As will be made clear in Sections 2.2 and 2.7, expressions can be represented as
trees. Trees are, in principle, directed, acyclic graphs, consisting of vertices and
edges. Vertices can be used for representing the symbols occuring in the expression,
and edges for arranging the vertices in the right way. Now, whenever a rewrite rule
is applied, it is not applied to the expression itself, but rather to the corresponding
tree, and the result is again another tree. But how is this achieved? Traditionally,
the new tree is entirely created from new vertices and the old tree is entirely
deleted. This, of course, works pretty fine, but in some cases is inefficient: If the
new tree shares some of its vertices with the old one, then why not just use them
instead of creating new ones? This approach would save some creations/deletions
and hence speed-up the rewriting process, at least in theory. This idea is due to
my supervisor, Prof. Jebelean, and to work it out in detail and also to implement
it was the main task of this thesis.

The goal of my master’s thesis was the implementation of various rewrite systems,
preferably in the programming language C++, that make use of exactly the idea
described above. The result are three different programs, “Interpreter” (Version 1),
“Compiler” (Version 2) and “Compiler/SV” (Version 3), each incorporating the
main idea of reusing existing objects and each usable for “real” rewriting tasks.
The interpreter reads a given rule set, stores the rules in some representation, and
then is immediately ready to start rewriting. In contrast to that, Versions 2 and 3
are compilers that transform rule sets into executable programs. Therefore, for
each rule set there is an own program associated to it which is only suitable for
solving rewriting tasks for only that rule set. The difference between “Compiler”
and “Compiler/SV” is the capability of the latter one to treat so-called sequence
variables, variables that can be instantiated with an arbitrary sequence of expres-
sions, see Section 2.6. All of the programs have been tested thorougly and seem
to work fine.

The structure of this document is the following: The last part of this chapter is
dedicated to the rewriting-system Maude, meaning that some general information
on Maude is given and comparisons to the programs implemented in the frame of
this thesis are made. The next chapter introduces some basic notions and basic
definitions used throughout the document, like the already mentioned expressions.
Chapter 3 gives some short, general description of the implementation of the pro-
grams; more precisely of the part of the implementation that is shared by all three
versions. This description is continued in far more detail in Chapters 4.1, 5 and 6
where the focus lies on the interpreter (Version 1), the compiler (Version 2) and
the compiler with sequence variables (Version 3), respectively. Each of these three

1 Introduction 12

chapters also includes a short description of how the corresponding program can
actually be used. Chapter 7 presents some results from timing experiments that
have been performed in order to compare the different versions to each other as
well as to compare the new approach to the traditional one. The last chapter
draws some conclusions and also contains a short theoretical complexity analysis.
The appendix contains all special commands that can be used when running the
programs, as well as all the rule sets that are mentioned in this thesis (e. g. in
connection with timing experiments), together with a short description.

1.1 Maude

All information about the rewriting-system Maude is taken from [2], and in par-
ticular from [7].

Maude is a high-end rewriting-system that can be used in many areas of computer
science and mathematics, ranging from applications in logic over program verifi-
cation and model checking. As every rewriting-system, its core part consists of
rules (and equations), similar to the ones presented in this document, that can
be applied to objects in order to transform them into new objects (compare Sec-
tion 2.1 for a formal definition of rewriting). Hence, there are similarities between
Maude and the programs that have been developed in the frame of this thesis, and
that is exactly the reason of this section: Comparing, in terms of functionality,
the rewriting-systems of this thesis to the established, high-end rewriting-system
Maude.

In Maude, every rewrite-theory is given by a so-called module. Hence, modules can
somehow be seen as the Maude variant of the rule sets that have to be specified
in connection with the programs of this thesis. However, Maude distinguishes
two kinds of modules: Functional modules and system modules. The reason is the
following: In Maude there are two different types of rewrite rules. On the one hand,
there are equations that are used to define rewrite rules that transform objects into
“equal” objects, like “1+2” into “3”. On the other hand, there are rules that are
used to model state transitions, i. e. transformations where the resulting object
is not necessarily “equal” to the old one. Of course, “equal” has no predefined
meaning, but rather has to be defined in some way. Functional modules may only
contain equations, whereas system modules may contain both equations and rules.
This is the first difference between Maude and the programs of this thesis: Here,
no distinction is made between rewrite rules that preserve equality and the ones
that do not.

1 Introduction 13

A second, important difference results from rewrite rules, too: In Maude it is
possible to equip both equations and rules with conditions, i. e. boolean expressions
depending on the LHS of the rewrite rule, such that the rewrite rule is only applied
if the condition yields “true”. This is a very powerful (and in some cases even
absolutely necessary) concept, which is also supported by other rewriting-systems,
like Mathematica [3], but not by any of the three different systems developed in
the frame of this thesis.

Another very important difference are the strict typing restrictions in Maude.
There, every function/operator/constant/variable explicitly needs to be assigned
to a certain sort. Sorts themselves have no predefined meaning and must therefore
be defined by the user. The purpose of sorts is helping the user forming valid
expressions: An operator can only be applied to a sequence of arguments if the
sorts of the arguments correspond to the signature of the operator. Please note
that in the programs of this thesis there are no typing restrictions at all: Symbols
are just symbols without any meaning (see Section 2.2 for more information about
well-formed expressions).

One more difference is the support of sequence variables (Section 2.6): Maude,
unlike Mathematica, does not support sequence variables. However, it provides
quite elegant ways to overcome this fact: Operators can be equipped with certain
attributes, like associativity, commutativity, and many more. This allows the user
to represent arbitrary sequences of objects as nested applications of one and the
same (associative+commutative) operator, and still design the rewrite rules in a
very short and intuitive way, almost as if sequence variables were involved. An
example on this issue can be found in the appendix, in Section B.9.

Of course, the list of differences from above is by no means complete; Rather, it
covers the most important (in my view) features of Maude and compares them
to the features of the rewriting-systems developed in the frame of this thesis.
As already mentioned above, Section B.9 in the appendix contains a short ex-
ample of a Maude-module: The Maude-version of the sequent calculus rule set
SequentCalculus, which can be found in the appendix, too. For more informa-
tion on the syntax and semantics of a module in Maude, and how one can actually
work with it, please let me refer to [7].

Chapter 2

Basic Definitions

2.1 Formal Definition of Rewriting

As pointed out in the introduction, rewriting is the very well-known (especially in
logic and computer science: [4, 5, 11]) art of transforming expressions (or “terms”,
see Section 2.2) into other expressions by successively applying so-called rewrite
rules. This section aims at formalizing this rather intuitive concept in order to
keep the thesis self-contained. First of all, it is necessary to give various auxiliary
definitions, such as substitution and pattern matching.

Definition 1. Let x1, x2, . . . , xn be pairwise different variables. A set σ of the form
{x1 → e1, x2 → e2, . . . , xn → en} is called a substitution if every ei is an expression
(or a sequence of expressions, if xi is a sequence variable; see Section 2.6) where
none of the variables occurs.

Remark 2. The above definition is not the most general one. In principle it is also
allowed that the ei do contain variables; However, this is not needed in the frame
of this thesis.

Please note that the empty set is a substitution as well, called empty substitution.
The next definition states what can be done with subsitutions.

Definition 3. Let a be an expression, σ = {x1 → e1, . . . , xn → en} a substitution.
The application of σ to a, denoted as aσ, is again an expression, where every
occurence of xi in a is replaced by ei, for all 1 ≤ i ≤ n.

Now that the very basic notions of substitution have been made clear, let’s move
on to pattern matching, or in short simply matching. Pattern matching means

14

2 Basic Definitions 15

trying to make two expressions equal, by providing a suitable substitution for the
variables of one of the two expressions.
Definition 4. Let a and b be two expressions. a matches b iff there exists a
substitution σ such that aσ = b. This is denoted by match(a, b, σ).

In what way is matching beneficial for rewriting? The answer is quite simple: It
allows us to define the rewrite rules, or in short simply rules, that are the very
basic ingredients for every rewriting process.
Definition 5. A rewrite rule r is a pair of expressions (lhs, rhs), where every
variable occuring in rhs occurs in lhs as well, but no necessarily vice versa. lhs(r)
denotes lhs, rhs(r) denotes rhs, and var(r) denotes the set of all variables occuring
in lhs.

Rules can be grouped together in a so-called rule set, in the following always
denoted as R. However, since in most applications (also here in this thesis) the
order of the rules is important, the word “set” is misleading; It is more a tuple of
rules, but for now this does not really matter.
Definition 6. Let a and b be two arbitrary expressions. a can be rewritten in one
step into b w. r. t. the rule setR, denoted by a→R b, iff there exist a subexpression
a′ of a, a rule r ∈ R and a substitution σ for var(r) such that

1. match(lhs(r), a′, σ) (r matches a′)

2. b is equal to a where a′ is replaced by rhs(r)σ

Obviously, for given R, →R defines a relation on the set of expressions. But one
could also have a look at the reflexive-transitive closure of this relation:
Definition 7. Let a and b be two arbitrary expressions. a can be rewritten into b
w. r. t. the rule set R, denoted as a →∗R b, iff there exist expressions b1, b2, . . . , bn
such that
a = b1 →R b2 →R . . .→R bn = b.

Now it should be clear what it means to rewrite an expression a w. r. t. a rule
set R: It is just trying to find an expression b with a →∗R b and b itself cannot
be rewritten any more (of course, such an expression does not need to exist in
general). That is exactly what the programs implemented in the frame of this
thesis do.

In the rest of this section it is explained how expressions, rules, rule sets, etc. are
given in this thesis.

2 Basic Definitions 16

2.2 Expressions

Expressions, or terms, are one of the very basic ingredients of rewriting systems
and thus well-known concepts in logic and computer science [6]. In fact, the
formal definition of expressions given below is quite similar – though not completely
equivalent – to the inductive definition of expressions in predicate logic. Since there
are many other programs, as Mathematica [3] or Maude [7], that are rewriting
systems as well, they have an own definition of expressions/terms; However, all
those different definitions are very similar to each other, and therefore similar to
the one shown below, too.

Let us see now how expressions are given within the frame of this thesis, i. e. both
in the rule sets as well as in the programs. Indeed they are given by strings of
characters, as one would expect, where function symbols have to appear before
their argument list, which is enclosed by square brackets ([,]). The arguments
of a function are separated by commas (,), followed by at most one additional
whitespace character in order to increase readability. All other whitespaces are
part of the next symbol, which means that any symbol may start with or even
consist only of whitespace characters. This is a general paradigm: Characters
have absolutely no predefined meaning (apart from square brackets, commas, and
partially whitespaces) - A “+”, for example, may be the name of a function, the
name of a constant, or only part of a symbol. It does surely not stand for addition,
in any sense, unless defined by the user.

One could also give a more formal definition of expressions:

Definition 8. 1. Any symbol c whose name does not contain square brackets
and commas, but at least one character, is an expression. In this case, c
stands either for a constant or a variable.

2. If f is a symbol and a1, a2,. . . , an are expressions, then also f [a1, a2, . . . , an]
is an expression. In this case, f stands for a function which is applied on the
arguments a1,. . . , an. In connection to Version 3 (“Compiler/SV”), n could
also be 0.

3. These are all.

Note that absolutely nothing is said about the names of symbols, which means
that a symbol might occur both as a constant/variable and as a function. Note
also that the arity of a function symbol is not fixed, which means that the same
function symbol might occur with different numbers of arguments. In fact, these
two properties form the main differences to expressions/terms of other systems

2 Basic Definitions 17

as well as predicate logic: There, every symbol is either a constant symbol or
a variable symbol or a function symbol, and every function symbol has a fixed
arity. Summarizing, the definition of expressions given in this thesis is strictly
more general than that of, e. g., Mathematica, Maude and predicate logic, which
means that an expression/term in one of those contexts is also (equivalent to) an
expression according to the above definition, but not vice versa.

Please note also that there are lots of different ways to “write down” expressions,
e. g. consider the expression +[1, 2] which a human reader might rather consider
as 1 + 2 (the so-called infix notation). But there are also many other ways to
represent expressions, most notably Polish notation [6] and Lisp-like notation [13].

Here are some examples of well-formed expressions:

1. +[1,2]

2. +[1, 2]

3. +[1, 2]

4. [a function[a,b], a function[]]

5. 4*5[<, >, ’, _]

6. a constant

Note that the first two expressions are exactly the same, because the whitespace
after the comma is not part of the second argument. However, the third expression
is different, because there are two whitespaces after the comma, and one of them
belongs to the second argument (which is thus ␣2).
The fourth example again illustrates the use of whitespaces. The name of the
outermost function is just ␣, the name of its first argument contains a whitespace,
and its last argument is a function without any arguments (but the same name as
the first one). Remember that this is only valid in Version 3.
The fifth example shows that characters apart from [,] and , have absolutely
no predefined meaning. Although one might think that, for example, < stands for
“less than”, it is just the name of a constant.
The very last example is just a constant, which itself is also an expression.

The following are some examples of strings that don’t stand for well-formed ex-
pressions:

1. [1, 2, 3]

2 Basic Definitions 18

2. f[,1]

3. abc[def]ghi

4. +, -, /

The first example is invalid because the outermost function doesn’t have a name.
The second example is invalid, because the outermost function doesn’t have a first
argument. It would be valid, however, if there was a whitespace character right
after [.
Example three is not well-formed, because after] there is no ,.
The last example is not well-formed, because there is no enclosing outermost func-
tion for the three arguments +, - and /.

Please be aware that the lack of rules for defining valid expressions, compared to
other (programming-) languages, gives the user huge power to give meaning to
symbols just as he likes, but on the other hand it is also him (not the program)
that needs to take care that everything he writes is really what he wants.

2.2.1 Subexpressions

One important concept that has already been mentioned in Section 2.1 is the
concept of subexpressions. A subexpression of an expression is simply a part of
that expression which is itself also an expression:

Definition 9. Let the relation v on expressions be defined in the following way:
a v b iff b is of the form f [a1, . . . , ai−1, a, ai+1, . . . , an], which only means that a is
an argument in expression b.

The reflexive-transitive closure of v, denoted as v∗, is the desired subexpression-
relation:

Definition 10. For arbitrary expressions a and b: a v∗ b (in words: “a is a
subexpression of b”) if and only if either a = b or a v b1 v b2 v . . . v bn v b for
some b1, b2, . . . , bn.

2.2.2 Position of Objects

The objects of an expressions are all the symbols occuring in it, where the same
symbol at different places stands for different objects. The position of an object

2 Basic Definitions 19

in an expression is defined in a quite natural way: Just go through the expression,
from left to right, until you reach that object. Count the number of all objects you
have reached in this process - This is exactly the position. The outermost object
always has position 0.

It is also possible to define the position of an object/vertex in terms of the tree
representing the expression (see Section 2.7). In that case, perform depth-first-
search until you reach the vertex and again count all other vertices visited by
doing so. This number is again the position of the vertex, and it is always equal
to the number resulting from the algorithm above.

Here are some examples:

• c
c: 0

• f[a, b]
f: 0
a: 1
b: 2

• f[g[a], g[b], c]
f: 0
first g: 1
a: 2
second g: 3
b: 4
c: 5

2.3 Integers and Natural Numbers

This section does not aim at defining the sets of Integers and Natural numbers, but
rather at how they are treated by the programs. First of all, numbers are of course
just given as, like any other expressions, strings of characters, or more precisely,
strings of digits (with a possible “-” in front to indicate negative numbers). But
as was explained in the previous section, also these symbols have no meaning!
They are just symbols, the user can give any meaning he wants to them. But
still, in many applications, it would be good to be able to deal with them as
numbers. This includes adding them, multiplying them, comparing them, . . . , in
short: Performing arithmetic on them. So, how can this be achieved?

2 Basic Definitions 20

As the experienced reader surely knows, Natural numbers can be defined induc-
tively by means of a minimal element (0) and a successor function (succ, see also
[12]). Thus, one could also write, say, 2, as succ[succ[0]]. This notation now
allows to define (rewrite-) rules for arithmetic and other things. For example, one
can define Addition in the Naturals just as

+[m, succ[n]]→ succ[+[m,n]]

+[m, 0]→ m

where m and n are exatly such succ-objects.
But this is a very inconvenient way to represent numbers. It takes longer to type
all the characters and it makes the input (and of course also the output) less
readable. For that reason, a method is implemented to automatically transform
Natural numbers given in default notation (0, 1, 2, . . .) into succ-objects. To
see how this is done, let me refer to Sections 2.5 and A.4, but the result is the
following: If the user types in the constant (not function!), say, 3, this is internally
transformed into the expression succ[succ[succ[0]]] - fully automatically.
But not only does this work for the input, but also for the output: If the result of
a rewriting process contains as a subexpression, say, succ[succ[0]], the user can
request this to be printed simply as 2. Again let me refer to Section A.4 to see
how the user can tell the program to do so.

Now that it should be clear what can be done with Natural numbers, let us focus
on Integers. Of course, the only thing that is different to Natural numbers is the
possibility of having negative numbers. Hence, one could just add an additional
all-enclosing function, e. g. neg, to denote negative numbers. However, in any
case there is one problem (also for positive numbers): The representation as succ-
objects becomes extremely memory-consuming (and also time-consuming) for big
numbers (w. r. t. absolute value). The even not that big number 867 can obviously
be represented by only three digits, but would require exactly 867 succ functions.
So, why don’t use this fact? Indeed, 867 could be represented by the expression
Int[7, Int[6, Int[8, 0]]]. This idea is also used in [12], and I will not go into
more detail on that in this thesis. But it can be seen (again in [12]) that such a
representation allows defining arithmetic, among other things, on the whole set of
Integers, in a far more efficient way than by using succ-objects.
The reason for explaining all that is, of course, that any Integer can be auto-
matically transformed into such form, just like Naturals can be transformed into
succ-objects. Again let me refer to Sections 2.5 and A.4 to see how it is done.

2 Basic Definitions 21

2.4 Rewrite Rules

Since this thesis is about rewriting, there is a need to clarify how rewrite rules are
given within its context. This, however, is rather simple: Rewrite rules are again
expressions, but with a very special format. The outermost function of each rule
has to be Rule, and it needs to have exactly three arguments. Let us skip the
first argument for now and immediately focus on the last two arguments: They
are just the left-hand-side (LHS) and right-hand-side (RHS) of the rule, given as
ordinary expressions (see Section 2.2). Now, there is only one question remaining:
What about variables? Surely many rewrite rules include variables to make them
more general, but how are variables defined here? There is no special syntax for
specifying what is a variable and what is a constant, like, for example, adding an
underscore in Mathematica [3]. Rather, all symbols that should be regarded as
variables, whenever they don’t appear as function symbols, have to be explicitly
listed in a so-called VarList, which is now the first argument of the Rule function.
Its name is, as expected, VarList, and it can have any number of arguments (even
no arguments at all). In any case, all arguments have to be pairwise different
symbols.
Please note that there is one more restriction: Every variable that occurs on the
RHS of a rule also needs to occur on the LHS of that rule, because otherwise the
whole rule would not make sense in terms of a rewrite rule (see Definition 5). But,
in contrast, it is allowed that a variable does not occur in a rule at all, neither on
the LHS, nor on the RHS.

The following are some examples of well-formed rules:

• Rule[VarList[m, n], +[m, succ[n]], succ[+[m, n]]]

• Rule[VarList[m], +[m, 0], m]

• Rule[VarList[m, blabla], *[m, 0], 0]

• Rule[VarList[], power[e, *[i, pi]], -1]

The first two rules are those that already appeared in the previous section for
defining addition in the Natural numbers.
The third rule could be regarded as one rule for defining Multiplication, again
in the Naturals. Please note that variable m only appears on the LHS, and that
variable blabla does not appear at all, which is perfectly fine.
The last rule does not include any variables; It could be interpreted as the algebraic
identity eiπ = −1.

2 Basic Definitions 22

How single rules are grouped together to form whole rule sets is explained in the
next section, Section 2.5.

2.5 Rule Sets

Now that it should be clear how single rules are given, the next step is to show
how they are grouped together to form whole rules sets. And as it turns out, this
is quite simple: Rule sets are simply ordinary text files, with the rules included
line-by-line.

But there are even more things that can be done. For example, recall the section
about Integers and Natural numbers. As was promised there, it will now be ex-
plained how numbers occuring in rule sets can be automatically transformed into
succ or Int objects. This is achieved by the three commands #MAKE_NOTHING,
#MAKE_SUCC and #MAKE_INT. They can appear anywhere in the file (again in one
separate line) and they affect all rules coming after them until the next such
command or the end of the file. The first command, #MAKE_NOTHING, leaves num-
bers unchanged; The second one, #MAKE_SUCC, transforms all subsequent Natural
numbers into succ-objects; And finally the last one, #MAKE_INT, transforms all
subsequent Integers into Int-objects.

Another important issue is including rules that are already grouped in another
rule set. For example, imagine again Natural numbers. First, one ususally defines
addition by specifying several rules, which are then put together into one rule
set. Afterwards, one realizes that also multiplication would be quite useful. Thus
one starts defining the rules for multiplication, but then sees that this operation
cannot be defined without addition. So, what now? Of course one can again write
down all the rules for addition in the rule set for multiplication, but this is very
inconvenient, especially since these rules are already available (but in a different
file). For that reason there is another command, Needs[filename], that includes
all rules of the rule set stored in the file filename. Again, this command can appear
anywhere in the file (and of course also more than just once), and the rules are
included exactly after the last rule before this command and before the next rule
after this command. This is important, since the order of rules really matters in
the implementation of rewriting by the programs of this thesis. Also note that in
principle it is possible that there are circles of inclusions, i. e. that a rule set is
included in another rule set, which itself is included in the first set. Such circles
do not cause infinite loops when loading the files, since the programs keep track
on which files have already been loaded and which haven’t. Including a file that
has already been loaded has no effect!

2 Basic Definitions 23

For increasing readability, lines can be also left empty, for example to visually
separate single rules or blocks of rules. For documentation, also comments can be
made. Just like all other commands, they have to appear in single lines as well,
starting with two slashes (//).

Summarizing, the following are the ingredients of a file containing a rule set:

• #MAKE_NOTHING, #MAKE_SUCC, #MAKE_INT

• Needs[...]

• Rules themselves, as described in the previous section

• Comments

• Empty lines

Rule sets used for testing can be found in the appendix.

2.6 Sequence Variables

For some problems in the vast area of rewriting it is not enough to only have
“normal” (individual) variables available when defining rules for solving them. For
example, think of the problem of sorting a sequence of Natural numbers (possi-
bly represented as succ-objects). If the length of the sequence is arbitrary and
unbounded, it is almost impossible to come across reasonable rules for doing the
job without using sequence variables. The concept of sequence variables is rather
simple and taken from [10]:

Definition 11. A sequence variable may be instantiated not only with one expres-
sion, but with a whole (finite!) sequence of expressions, possibly even the empty
sequence.

This means, for example: If, on the LHS of a rule, a function appears whose only
argument is a sequence variable, then the argument list of that function matches
any argument list (Of course, if the sequence variable occurs more than once, then
all occurences have to be instantiated with equal sequences of expressions).

In the frame of this thesis, sequence variables can be used only in connection
with Version 3 (“Compiler/SV”). In rule sets, they are indicated by the suffix “_”

2 Basic Definitions 24

after the variable name. This means, every variable whose name ends with an
underscore is a sequence variable, if the version mentioned above is used. In any
other version they are just orinary individual variables.

There are also other rewrite systems with such a concept, most notably Mathemat-
ica [3], where sequence variables are indicated by either two or three underscores.
Note that three underscores are needed if the variable should also have the possi-
bility to be instantiated with an empty sequence, just as the sequence variables in
this thesis.
More information on sequence variables can be found, for example, in [10].

In order to see one solution for the problem of sorting sequences of Natural num-
bers, have a look at the rule set Sorting that can be found in the appendix, in
Section B.7. This rule set is capable of sorting sequences of Natural numbers with-
out holes, i. e. where no number between the sequence minimum and -maximum
is missing, and where the numbers are given as succ-objects.

2.7 Trees

The next thing that needs to be clarified is how expressions are represented internal
to the programs. There are many ways, and one is of course to represent them as
strings of characters, just as they are given in rule sets (see Section 2.2). However,
this is very inefficient: It is hard to collect all arguments of a function, to even
count the number of arguments, and, last but not least, to replace subexpressions
by other subexpressions, as has to be done in the rewriting process. Rather, a
completely different approach is pursued: There is a natural 1-1 correspondence
between expressions and trees: Trees are again a very well-known and well-studied
data type in computer science (Section 2.3 in [9]) that is mainly used to store
information with an inherent strictly hierarchical structure. Representing expres-
sions as trees allows to efficiently retrieve information about them and manipulate
them. But first of all, trees have to be formally defined.

Trees are a special kind of directed, acyclic graphs, i. e. graphs where all edges also
have a direction, and where one cannot start in a vertex, travel through the graph
by going along edges in their respective directions, and finally arrive again at the
starting vertex. In addition to that, for every vertex in a tree there may be at
most one edge “arriving” in it. The following is a formal definition of trees:

Definition 12. 1. A single vertex is a tree.

2. If v is a vertex and t1, t2, . . . , tn are trees, then also

2 Basic Definitions 25

v

t1 t2 . . . tn
is a tree. v is the parent of the t’s and the t’s are its children. The direction
of the edges is from v to ti, for any i.

3. These are all.

Definition 13. In a tree, vertices without children are called leaves, other vertices
are called nodes or internal vertices. The arity of a node is exactly the number
of its children (Hence, one could also say that leaves are nodes with arity 0). A
vertex u is called successor of a vertex v iff it is the child of a child of a child . . .
of a child of v.
As one easily sees, in every tree there is exactly one vertex without a parent; This
vertex is called root of the tree. Each vertex v is the root of a subtree denoted as
[v], which is the tree containing all successors of this vertex.

The previously mentioned 1-1 correspondence between expressions and trees can
be expressed by the following identities:

• Expression ↔ Tree

• Subexpression ↔ Subtree

• Function ↔ Node

• Arguments of function ↔ Children of node

• Function arity ↔ Node arity

• Constant/Variable ↔ Leaf

• Outermost symbol ↔ Root

In order to illustrate the concept of trees used for representing expressions, here
are some examples:

• f[a, b, g[c, d]] f

a b g

c d

2 Basic Definitions 26

• f[f[f[1, 2]]] f

f

f

1 2

• h[a, b, c, d] h

a b c d

• 0 0

In the subsequent sections, both expression- and tree terminology will be used to
describe exactly the same objects, namely expressions. However, whenever the
focus lies on representation and, say, the word “function” is used, it should be
clear that actually “node” is meant.

For sake of completeness it also has to be mentioned that there is a huge variety
of different ways to represent expressions/terms in an efficient way; Trees are only
one of them. For instance, one could relax the definition of trees a little bit by
not requiring that each vertex has at most one parent. The result are then just
arbitrary directed acyclic graphs, which might also be considered as trees where
nodes “share” some of their children. One of the systems that pursues exactly this
approach is again the previously mentioned Maude system (Section 5 in [8]).

2.8 Mappings

Later in this thesis, mappings will play an important role. More precisely, admis-
sible mappings from the LHS of a rule to the RHS of the same rule. So, what are
those admissible mappings? First it should be made clear what a mapping is in
the context of this thesis. It is basically a function, depending on two expressions,
whose domain is the set of objects (functions, constants, variables (→ vertices))
of the first expression, and whose codomain is the set of objects of the second
expression, plus an additional element ∅. Hence, let me again emphasize that a
mapping always depends on two expressions. However, in most cases these two
expressions are clear from the context, and will therefore be omitted.

2 Basic Definitions 27

2.8.1 Type- and Arity Preserving Mappings

Not all mappings between two expressions are needed to be considered. In fact,
there are only two different kinds: Type preserving and arity preserving mappings,
whose definitions follow below. Their meanings will become clear in Chapters 5
and 6, but let me give a brief hint already now: The purpose of type preserving
mappings is, basically, to map functions to functions (without considering their
respective arities), constants to constants, and occurences of some variable to
occurences of the same variable, i. e. they preserve the type of objects (hence the
name). Arity preserving mappings, on the other hand, map functions to functions
with the same arity, occurences of some variable to occurences of the same variable,
and completely ignore constants (map them all to ∅), i. e. they preserve the arity
of functions (hence the name). Both kinds of mappings do so in an “as bijective
as possible” manner . . . what this really means is explained in their definitions
below (note that the additional element ∅ in the mapping’s codomain is in fact
only needed to ensure injectivity, in some sense).
Examples of mappings can be found a bit later in this section, in Subsection 2.8.2.

Definition 14. A mapping µ is called type preserving iff

1. Every function is mapped either to a function or to ∅

2. Every occurence of a variable v is mapped either to an occurence of the same
variable v or to ∅

3. Every constant is mapped either to a constant or to ∅

4. Let D denote the domain of µ and N := {x ∈ D|µ(x) = ∅}. Then µ|D\N is
injective. In other words, ∅ is the only element of the codomain that may be
reached by more than one element of the domain (injectivity)

5. If there is a function that is mapped to ∅, then every function of the codomain
is in the range of the mapping (surjectivity)

6. If there is a variable v that is mapped to ∅, then every such variable v of the
codomain is in the range the mapping (surjectivity)

7. If there is a constant that is mapped to ∅, then every constant of the codomain
is in the range of the mapping (surjectivity)

Definition 15. A mapping µ is called arity preserving iff

1. Every function is mapped either to a function of the same arity, or to ∅

2 Basic Definitions 28

2. Every occurence of a variable v is mapped either to an occurence of the same
variable v or to ∅

3. Every constant is mapped to ∅

4. Let D denote the domain of µ and N := {x ∈ D|µ(x) = ∅}. Then µ|D\N is
injective. In other words, ∅ is the only element of the codomain that may be
reached by more than one element of the domain (injectivity)

5. If there is a function that is mapped to ∅, then every function of the same
arity of the codomain is in the range of the mapping (surjectivity)

6. If there is a variable v that is mapped to ∅, then every such variable v of the
codomain is in the range the mapping (surjectivity)

There are only two differences between type- and arity preserving mappings: In
arity preserving mappings, the arity of a function has to be preserved by the
mapping (hence the name), and constants are always mapped to ∅.

Definition 16. A mapping is said to be admissible iff it is type preserving or arity
preserving (or both).

For type/arity preserving mappings also an inverse mapping can be defined, which
itself is type/arity preserving as well. For that purpose, let again be µ such a
mapping and e1, e2 the two expressions where it is defined on, D its domain and
C its codomain. Then µ−1 is defined in the following way:

1. For any x ∈ D: If µ(x) = y and y 6= ∅, then obviously y is in the domain of
µ−1 and µ−1(y) = x.

2. For any other element w in the domain of µ−1 which is not dealt with in the
first case, define µ−1(w) = ∅.

By construction of the inverse, the following theorem holds:

Theorem 17. Let µ be a mapping with domain D and codomain C. Then µ−1 is
a mapping with domain D = C\{∅} and codomain C = D ∪ {∅} such that

1. For all x ∈ D: Either µ(x) = ∅ or µ−1(µ(x)) = x

2. For all y ∈ D: Either µ−1(y) = ∅ or µ(µ−1(y)) = y

2 Basic Definitions 29

2.8.2 The Notation of Mappings

In the following, the position of an object x in the expression expr is denoted
by ϕexpr(x) (see Section 2.2.2 for the definition of “position”). Let µ be a map-
ping between expressions a and b. Then this mapping is denoted by {ϕa(x1) →
ϕb(µ(x1)), . . . , ϕa(xn)→ ϕb(µ(xn))}, where x1, . . . , xn are all the objects of a, and
additionally, for any expression expr, ϕexpr(∅) is set to -1. Please note that some-
times all the terms n→ −1, for any n, are omitted in order to make the notation
shorter.

The following are some examples of pairs of expressions plus all of their admissible
mappings (m and n denote variables, all other non-function symbols are constants):

• +[m, S[n]], S[+[m, n]]

1. {0→ 0, 1→ 2, 2→ 1, 3→ 3} (type)
2. {0→ 1, 1→ 2, 2→ 0, 3→ 3} (both)

• *[m, S[n]], +[*[m, n], m]

1. {0→ 0, 1→ 2, 2→ 1, 3→ 3} (type)
2. {0→ 0, 1→ 4, 2→ 1, 3→ 3} (type)
3. {0→ 1, 1→ 2, 2→ 0, 3→ 3} (type)
4. {0→ 1, 1→ 4, 2→ 0, 3→ 3} (type)
5. {0→ 0, 1→ 2, 2→ −1, 3→ 3} (arity)
6. {0→ 0, 1→ 4, 2→ −1, 3→ 3} (arity)
7. {0→ 1, 1→ 2, 2→ −1, 3→ 3} (arity)
8. {0→ 1, 1→ 4, 2→ −1, 3→ 3} (arity)

• f[m, 0], g[f[m, 0], 1]

1. {0→ 0, 1→ 2, 2→ 3} (type)
2. {0→ 0, 1→ 2, 2→ 4} (type)
3. {0→ 1, 1→ 2, 2→ 3} (type)
4. {0→ 1, 1→ 2, 2→ 4} (type)
5. {0→ 0, 1→ 2, 2→ −1} (arity)
6. {0→ 1, 1→ 2, 2→ −1} (arity)

2 Basic Definitions 30

2.8.3 The Number of Mappings

As it will turn out, some of the programs have to compute all of the type/arity
preserving mappings between two expressions. The reason behind this effort is
explained in Chapters 5 and 6. However, in any case, it would be good to know
how many of those mappings there are. For that purpose, let a and b in the
following paragraphs be two expressions, let V := {x1, x2, . . . , xv} be the union
of the sets of variables of a and b, and let d be the maximum arity of functions
occuring in a or b. Let furthermore denote

• va,i, vb,i the number of occurences of the variable xi in a and b, resp., for all
1 ≤ i ≤ v

• fa,i, fb,i the number of functions of arity i in a and b, resp., for all 0 ≤ i ≤ d

• ca, cb the total number of constants in a and b, resp.

• fa, fb the total number of functions in a and b, resp., i. e. fa = fa,0 + . . .+fa,d
(analogous for fb)

• vm,i := min{va,i, vb,i}, vM,i := max{va,i, vb,i} for all 1 ≤ i ≤ v

• fm,i := min{fa,i, fb,i}, fM,i := max{fa,i, fb,i} for all 0 ≤ i ≤ d

• cm := min{ca, cb}, cM := max{ca, cb}

• fm := min{fa, fb}, fM := max{fa, fb}

Before actually computing the number of mappings, another definition is needed:

Definition 18. For m ≥ n ∈ N: mn is called falling factorial and defined as
mn := m!

(m−n)!

Let us first consider type preserving mappings. After applying basic combinatorics,
one gets that the total number of type preserving mappings between a and b is
equal to

na,b,type =
v∏
i=1

vM,i
vm,i · fMfm · cMcm (2.1)

For arity preserving mappings the formula looks similar:

na,b,arity =
v∏
i=1

vM,i
vm,i ·

d∏
j=0

fM,j
fm,j (2.2)

2 Basic Definitions 31

Remark 19. Please note that the total number of admissible mappings between a
and b is not just the sum of na,b,type and na,barity, because some mappings might be
both type- and arity preserving (like in the first mappings-example). Of course, one
could also think about calculating this number, but actually it is not necessary,
because always either type- or arity preserving mappings are considered, never
both.

Chapter 3

General Implementation
Documentation

This chapter describes some very general implementation concepts that are shared
by all three different programs that have been implemented in the frame of this
thesis. First, it is described how (function-/constant-) symbols are stored and
shared among different objects. Then it is explained how expressions, or more
precisely trees, and rules are implemented. Afterwards, the parsing algorithm of
expressions and rules is described in detail, and finally the rewriting strategy, i. e.
which rules are applied to which subexpressions, is explained.

3.1 Symbols

“Symbol” means in the context of this thesis of course “name of a function/con-
stant”. Since expressions are given by strings of characters, those names are also
strings of characters, and therefore the C++ standard-library class string (search
[1] for more information) suits perfectly for representing them. But, rather than
equipping every function-/constant object with such a string, all symbols are stored
in, depending on the concrete version, either one or two globally accessible list(s)
of symbols. These are simply linked lists of type string containg all symbols that
either appear in a rule or in an expression that has been typed in be the user in
order to be rewritten. If only one list is used, then really every symbol is included
there; If two lists are used, then one of them is for the symbols appearing only in
expressions typed in at run-time, and the other one is for symbols appearing in at
least one rule. In any case, every symbol is included only once in those lists, even

32

3 General Implementation Documentation 33

though it might appear several times in the previously mentioned sets. Objects
that implement functions/constants then only point to the corresponding list ele-
ment; See Section 3.2 for more detail on that.
The reasons behind this concept of globally storing symbols are rather obvious:
First, multiple occurences of one and the same symbol are stored only once, which
saves of course memory. Second, changing the name of functions/constants can be
done by changing only one single pointer, and not by possibly allocating additional
memory for storing the new string; This will be of special interest especially in con-
nection with the reusing-paradigm. The only disadvantage is that always when a
symbol is read, the whole list has to be searched in order to check whether this
symbol is already included or not. However, compared to the two huge advantages,
this seems to be negligible.

3.2 Implementation of Trees

Recall from Section 2.7 that all expressions, as defined in Section 2.2, are isomor-
phic to trees, and that it is exactly those trees that are really dealt with in the
programs. So, how are they implemented?
Since the implementation of the programs was done in C++, all the features of
an object-oriented programming language, such as inheritance and type polymor-
phism, as well as pointers, were available and also heavily used. Let me refer to,
for example, [14, 1] for more information about those programming concepts. In
particular, expressions/trees are implemented in the following way:

• Abstract base class Expression

• Derived:

– Class Constant
– Class Function
– Class Variable

Although there are several differences between the various versions, the hierarchy
of the classes from above is always the same. The motivation for this concept is
apparent: Every tree consists of a root vertex where (0 or more) subtrees originate
from. The roots of these subtrees may be nodes (functions) or leaves (constants
or variables), and therefore it is good practice to make use of the object-oriented
features of C++ and create an abstract superclass of functions/constants/variables
that can be made the type of a node’s children. This superclass, or base class, is
of course class Expression.

3 General Implementation Documentation 34

3.2.1 Class Expression

This abstract class is the base of every tree element. It contains various functions,
e. g. for copying and comparing trees, creating trees from strings of characters
and vice versa, and many more; Most of them are virtual and overridden (i. e.
implemented) in the derived classes. Note that class Expression also contains the
list(s) of symbols mentioned in Section 3.1 as static members.

3.2.2 Class Constant

This class implements constants. It contains the name of the constant in terms
of a string-pointer pointing to the corresponding element in the list of symbols,
see Section 3.1. In “Interpreter” and “Compiler” (Versions 1 and 2), there is only
one instance of class Constant for every constant, no matter how often it appears.
All of these instances are stored in, again either one or two, list(s) of constants,
working exactly as the list(s) of symbols. These lists of constants are contained in
class Constant as static members.

3.2.3 Class Function

This class implements functions/nodes. Like class Constant it contains the name
of the function in terms of a string-pointer, but apart from that it also contains
its arguments/children. Since function arguments can be anything (functions, con-
stants, variables), they are stored as members of type Expression. In “Interpreter”
and “Compiler” (Versions 1 and 2), they are stored in an array, in “Compiler/SV”
(Version 3) as a linked list. Consult the implementation documentation of the
various versions for more information, in particular Section 4.1, Section 5.2 and
Section 6.2.

3.2.4 Class Variable

This class implements variables in the LHS and RHS of rules. Although each
variable has a name when writing down the rules in terms of Section 2.4, those
names do not really matter; The only important thing is whether two variables
are equal (i. e. have the same name) or not (have different names). However, this
can also be modelled with numbers, or more precisely Natural numbers, so-called

3 General Implementation Documentation 35

indices, meaning that two variables have the same index iff they are equal. So,
instead of doing the same thing with pointers to strings as in classes Constant and
Function, every variable simply contains a member of type int, which is exactly
that corresponding index. Note that, although int contains negative numbers as
well, variable indices are always non-negative.

3.3 Implementation of Rules

First of all, in the compiler-versions 2 and 3, there are huge differences between
the implementation of rules in the compiler and the compiled programs. This sec-
tion only deals with their implementation in the respective compiler, because it is
very similar to their implementation in the interpreter (Version 1). For informa-
tion about the compiled programs, have a look at the chapters about the various
versions.

The implementation of rules is done with the class Rule. Unlike before, when
talking about expressions, this no base class for other classes, but the one and
only class needed for representing rules. It contains, among other things, two
pointers to Expression objects, namely to the expressions defining the LHS and
the RHS of the rule. Other important members are the number of variables of
the rule (of type int) and the list of the names of all rule sets that have been
loaded into the program (static member; must be known since every rule set must
be loaded at most once).
The most important functions of this class are the two functions for matching an
expression and rewriting an expressions. But, similar to expressions, there are also
functions for transforming a string of characters, which defines a rule according to
Section 2.4, into an instance of class Rule, and vice versa.

For every rule a new instance of class Rule is created, with its members set ac-
cordingly, and all of those instances are stored in a list of rules in the main file of
the program implementation; See the chapters dealing with the implementations
of the various versions for more information.

3.4 Parsing Expressions and Rules

Parsing an expression is straight-forward: The string of characters is scanned from
left to right until the first opening square bracket is reached. If no such square
bracket is reached at all (because the string ends or a comma is reached), the

3 General Implementation Documentation 36

expression is only a constant; In this case, first of all the name of that constant is
searched in the list(s) of symbols, and if it is not found, a new list entry is created.
Then, the corresponding instance of class Constant is either searched in the list(s)
of constants (Versions 1 and 2), or a new instance of class Constant is created
immediately (Version 3).
Otherwise, the outermost object is a function; Again, the name of that function
(i. e. everything before the square bracket) is searched in the list(s) of symbols
and added if not found. Then, a new instance of class Function is created and
the position of its closing square bracket is searched. Everything between the
two brackets are arguments of the function, and the parsing algorithm is applied
recursively on it. Note that in every version where function arguments are stored
in an array, first the number of arguments is counted in order to allocate that
array.
The only minor difficulties come from the fact that, after a comma, the first white-
space character has to be ignored, as imposed by the definition of expressions
in Section 2.2, and from the alternative representation of Integers and Natural
numbers: Whenever the parsing algorithm comes across a constant consisting only
of digits (and possibly a “-” in front) and the user requested to transform numbers
automatically into Int- or succ objects, then it of course doesn’t simply create
the constant as it is, but creates its alternative representation as an Int- or succ
object, respectively.

Concerning rules, the parsing is done almost completely in the same way as for
expressions. This is due to the fact that rules are given just as expressions, but in
an even more restrictive format (name of outermost function needs to be “Rule”,
. . . , see Section 2.4). The only difficulty arises from the presence of variables:
First of all, the arguments of the VarList-function need to be pairwise different
symbols, which can be checked very easily. Secondly, all those symbols have to
be stored temporarily, because whenever there is a non-function symbol in the
LHS or RHS whose name coincides with one of the variable-symbols, then it is no
constant, but a variable. Again, this can be done in a straight-forward manner,
by simply passing the list of variable-symbols as an additional argument to the
parsing algorithm.

The inverse of the parsing function is the function that, given a concrete expression
or rule, creates its representation as a string of characters. This, however, is rather
trivial. The only minor difficulties come again from Int- and succ objects that
are requested to be transformed into numbers.

3 General Implementation Documentation 37

3.5 Rule-Application Strategy

Assume there is an expression that has to be rewritten using a given set of rewrite-
rules. It is quite obvious, that, depending of course on the expression and the rules,
there are possibly many (more than one) subexpressions that might be rewritten
using possibly many (more than one) rules. So, there are in general many different
ways how to actually rewrite that expression, and thus the programs need to choose
on of them. But how is this done?

Let’s have a look at the rules first. Assume there is an expression a that (as a
whole) is matched by the LHS of any of the rules r1, r2, . . . , rn, for n ≥ 2, and
for all i < j the rule ri really comes before the rule rj in the rule set (the order
of the rules is preserved). Then there are two possible behaviors of any of the
programs: Either they just choose the first rule r1, or they choose one of the rules
randomly. This behavior can be controlled by the user; Let me refer to Section A.6
for more information on that. Please note that if the first rule is chosen, as soon
as the first rule is found, the searching for further rules is stopped and the rule
is immediately applied. If a random rule is applied, then all rules are tried and
the ones that really match the expression are stored temporarily in a list. Hence,
always choosing the first rule works a lot faster in general.

Now that it should be clear which rule is chosen to be applied, if there are more
than one possibilities, it would be interseting to know which subexpression is chosen
to be rewritten, if there are more than one possibilities. Again, there is a certain
strategy that is followd by all of the programs, but unlike before, this strategy
cannot be changed by any means by the user: Always the leftmost innermost
possible subexpression is rewritten. “Leftmost innermost” can be defined in the
following recursive way, exploiting the fact that expressions are isomorphic to trees:

Definition 20. Let v be the root of a tree. Then the leftmost innermost vertex
of that tree is denoted by first(v) and defined in the following way:

1. If v is a leaf, then first(v) := v

2. Otherwise, if v is a node and c1, . . . , cn are its children, then first(v) :=
first(c1)

However, since not only the leftmost innermost vertex is needed, but the leftmost
innermost possible subtree (where “possible” means here: “matched by the LHS of
at least one rule”), another definition has to be given:

3 General Implementation Documentation 38

Definition 21. Let v be the root of a tree and let P be an arbitraty unary predicate
defined on trees. Then the root of the leftmost innermost possible subtree of [v]
w. r. t. P is denoted as firstP (v) and defined in the following way:

1. If v is a leaf, then

firstP (v) :=
{
v : P ([v])
∅ : otherwise

2. Otherwise, if v is a node and c1, . . . , cn are its children, then

firstP (v) :=

firstP (ci) : firstP (ci) 6= ∅ ∧ ∀j<i : firstP (cj) = ∅

v : P ([v]) ∧ ∀j : firstP (cj) = ∅
∅ : otherwise

If P (t) is defined as “t is matched by the LHS of at least one rule”, then the
subexpression of expression a that is chosen to be rewritten corresponds to the
subtree [firstP (v)], where v is the root of the tree corresponding to a, if such a
subtree exists.
Some examples are given to illustrate the concept of “leftmost innermost possible”.
For that purpose, let Rule[VarList[x, y], f[x, y], x] be the only rule in the
rule set.

• f[0, 0]: The only possible subexpression is the expression itself

• f[f[0, 0], f[1, 1]]: Three possible subexpressions; The one starting at
position 1 (i. e. f[0, 0]) is leftmost innermost

• f[g[0, 0], f[1, 2]]: Two possible subexpressions; The one starting at
position 4 (i. e. f[1, 2]) is leftmost innermost

The implementation of the concept described above is done in the following way,
with the help of a stack:

1. Set v to the root of the considered tree

2. Search v1 := first(v) and push all nodes between v and v1 on the stack

3. Compute P ([v1]). In case of success, apply the corresponding rule on [v1],
set v to the root of the resulting tree and go back to step 2.
Otherwise, distinguish three cases:

3 General Implementation Documentation 39

(a) If p is the parent of v1 (p is then top of stack) and v1 has a right neighbor
v2 in the children of p, set v := v2 and go back to step 2

(b) If p is the parent of v1, but v1 does not have a right neighbor in the
children of p, pop p from the stack, set v1 := p and go back to step 3

(c) If v1 does not have a parent, we are done, because there is no possible
subtree at all

Now that the overall rewriting strategy of the programs is made clear, some words
about its consequences: Of course, given a concrete expression and a concrete rule
set, the result of the rewriting process might be different if a different strategy was
pursued. That means that indeed all the results may depend on the strategy. But,
however, there are some rule sets that have the so-called Church-Rosser property:
No matter how the rules are applied to a given expression, after sufficiently many
rewriting steps the result will always be the same. More information about the
Church-Rosser property can be found, for instance, in [15, 4].

Chapter 4

Version 1: The Interpreter

The first version that has been created, in the following simply called “Interpreter”,
works as follows: It reads a given rule set, creates and stores an internal represen-
tation of the rules, and is afterwards immediately ready to solve rewriting tasks
using the previously stored rules. That is why it is called “Interpreter”: Instead
of creating separate programs for each rule set (compiling them), it interprets the
rules just as they are without going the long way round.

The outline of this chapter is the following:
First, the main algorithms and their implementation are presented, as well as the
most important classes and their hierarchy in the implementation.
Afterwards, a short description of how the program is used is provided.
Finally, the chapter ends with a simple example that illustrates how the application
of one rewrite rule to a given expression is carried out internally.

4.1 Algorithms and Implementation

The description of the implementation of “Interpreter” can be structured into four
parts:

1. First of all, an overview of some implementation details is given.

2. When starting the program, the user has to specify the rule set that is used.
Hence, the methods for loading a rule and creating its internal representation
are described in the second part.

40

4 Version 1: The Interpreter 41

3. Afterwards, the user may type in expressions which then are rewritten. For
that purpose, the program has to check whether a rule matches a given
expression. The third part describes this matching algorithm.

4. Last but not least, if an expression a and a rule r matching a are known, a
needs to be rewritten by applying r. The fourth part describes this rewriting
algorithm.

There is a reason for separating the matching- and the rewriting algorithm. In
principle, one could put everything together into one algorithm, which first checks
whether the expression is matched, and in case of success immediately rewrites
it. However, this not possible in connection with the “use random rule” strategy
(Section 3.5): First all rules are tried, and afterwards one of those that really
match the expression is chosen to be applied. Therefore, the matching- and the
rewriting algorithms have to be separated from each other.

4.1.1 Implementation Details

• As was already mentioned briefly in Section 3.2.3, the arguments of a function
are stored as an array (of type Expression**) in the Function-class. This
means that the arity of such an object is fixed, i. e. cannot be changed after
the array was created. An additional member of type int, named argCount,
contains the length of the array.

• Again, as was previously mentioned in Section 3.2.2, there is only one in-
stance of class Constant for every constant, no matter how often it appears.
All of those instances are stored in the static member Constants of type
List<Constant> in class Constant.

• In addition to the three classes Constant, Function and Variable, there
are four more classes that are derived from Expression: AtomicExpr,
CompoundExpr, FunPosition and VarPosition. However, the first two are
only auxiliary abstract classes providing functionality that is shared among
some of the other classes, and the latter two are only used in the RHS of
rules. The hierarchy is the following:

4 Version 1: The Interpreter 42

Expression

AtomicExpr

Constant Variable VarPosition

CompoundExpr

Function FunPosition

4.1.1.1 Class FunPosition

Like class Function, this class also consists of a name and an argument-array
(which are therefore members of the common base class CompoundExpr). But in
addition to that, it has a member of type int, named position, as well. This
position refers to a position in the LHS of the corresponding rule; To which one
is explained when describing the algorithm that transforms the rhs-object into a
position tree, in Section 4.1.2.

4.1.1.2 Class VarPosition

Class VarPosition is related to class Variable similar as class FunPosition is
related to class Function: Instead of the index-object it contains another member
of type int, which is again called position and which again refers to a position
in the LHS of the corresponding rule.

4.1.2 Loading and Storing a Rule

Assume that a string of characters describing a rule according to Section 2.4 is
given. The main questions, that are answered in this subsection, are: How is
the internal representation of that rule created? How is that rule stored in the
program?

First of all, the parsing of rules is described in Section 3.4. Therefore, assume
from now on that there is a new instance of class Rule where the two members
lhs and rhs point to the LHS- and RHS expression of that rule, respectively, and
the member varCount is set to the number of variables occuring in the rule. The
next thing that happens is that several auxiliary members of the Rule-object are

4 Version 1: The Interpreter 43

set, which is done in the function setVectorsAndArray. The following is a list
of all that objects, their meanings and their initial values (set by the previously
mentioned function).

int arrayLength This object simply contains the size of the LHS of the rule,
and it is set immediately in the function setVectorsAndArray. The size of a tree
is defined quite naturally as the total number of its vertices.

vector<bool> *isVar This object is a bit-vector whose length is exactly
arrayLength, i. e. the size of the LHS. For any index i, the i-th element of this
vector is 1 (or TRUE) if and only if the object at position i in the LHS is a
variable, otherwise it is 0 (or FALSE).

vector<bool> *isUsed This object is again a bit-vector with the same length
as the isVar vector, i. e. the size of the LHS. At the beginnig, every element of it
is set to 0 (FALSE). It is an auxiliary object that is needed when making the rhs
expression a so-called position tree (see below).

Expression **varInst This object is an array of length varCount, where each
element points to an object of type Expression (or NULL). It is, however, not
set in the function setVectorsAndArray, but right in the constructor of class
Rule, where each element is set to point to NULL. Later on, in the matching- and
rewriting algorithm, it will contain the instances of the various variables.

There is one thing left that is done in the very last part of the setVectorsAndArray-
function: Transforming the rhs-object into a so-called position tree. That is,
replacing some of its Function- and Variable vertices by the previously
mentioned FunPosition- and VarPosition vertices, respectively. This is done in
the following way (by the function toPositionExpr of class Expression):

1. Go through the entire rhs-tree

2. Whenever you reach a Function-vertex f , go through the entire lhs-tree
until you reach a Function-vertex g with the same arity at a position where
the isUsed-vector is still 0. If such a vertex exists, set the element of the
isUsed-vector that corresponds to g to 1 and replace f by a FunPosition-
vertex with

4 Version 1: The Interpreter 44

• its name set to the name of f
• its arguments set to those of f
• its position-member set to the position of g in the lhs-tree

3. Whenever you reach a Variable-vertex v, go through the entire lhs-tree
until you reach a Variable-vertex u with the same index at a position where
the isUsed-vector is still 0. If such a vertex exists, set the element of the
isUsed-vector that corresponds to u to 1 and replace v by a VarPosition-
vertex with its position member set to the position of u in the lhs-tree

The resulting position tree defines an arity preserving mapping µ from the LHS
of the rule to the RHS of the rule (see Section 2.8): If, at position i in the rhs-
tree, there is a FunPosition-vertex with the value of position equal to j, then µ
contains the element j → i. Same for VarPosition-vertices.

Now there is still one question to be answered: Since there are, in general, lots of
arity preserving mappings (see Section 2.8.3), why aren’t all of them taken into
account? The reason is that in Version 1 it simply does not matter which of them
is eventually chosen: Any of them is as good as any other, so the algorithm just
chooses “the first” one. In the other versions, however, it indeed does matter, and
as it turns out, “the best” one will be chosen there.

The very last thing that happens before the user can eventually rewrite expressions
is that an auxiliary array, named exprArray of type Expression**, is allocated.
This object is a static member of class Rule and will be needed in the rewriting
algorithm; Its length is the maximum of the values of the arrayLength-members
of all the rules loaded into the program.

4.1.3 The Matching Algorithm

Assume in this subsection that there is an expression a and a rule r, and the
task is to check whether r matches a, and if so, find out what the corresponding
substitution σ is. This can be done in a rather straight-forward way: The function
matchExpression of class Rule first sets all elements of varInst to NULL and
then calls the match-function of class Expression on lhs(r) and a. The algorithm
itself works as follows:

1. Let x denote the root of the first input argument (coming from the LHS
of the rule) and y the root of the second input argument (coming from the
expression)

4 Version 1: The Interpreter 45

2. Now distinguish several cases:

(a) If x and y are both functions with the same arity and the same name,
call the function recursively on all pairs of their arguments, one after
the other. If the result of one of those recursive calls is FALSE, return
FALSE; Otherwise, return TRUE

(b) If x and y are both constants with the same name (since in Version 1
there is only one instance for constants with the same name, x and y
are even the same object), return TRUE

(c) If x is a variable and the corresponding element of the varInst-array
still points to NULL, make that element point to y and return TRUE

(d) If x is a variable and the corresponding element of the varInst-array
points to the root of a tree b, compare b and [y] (the subtree with root
y). If they are equal, return TRUE; Otherwise, return FALSE

(e) In any other case, return FALSE

If the result of this algorithm is TRUE, then the rule r matches the expression a
and the substitution σ is given by the varInst-array: Assuming that the variables
are x0, x1, . . . , xn, if the i-th element of varInst points to the root of an expression
ei, then σ contains the element xi → ei.

Two short remarks: Of course, a variable can appear more than once on the LHS
of r. In that case, it is not quite clear which of the roots of the corresponding
instances of a the element of varInst points to. However, since they have to be
equal anyway, this does not matter at all.
It is in principle also possible that even after the execution of the above algorithm
still some elements of varInst point to NULL. This is the case if the corresponding
variable does not occur on the LHS at all, but then, due to Definition 5, it must
neither occur on the RHS, which means that the variable is redundant.

4.1.4 The Rewriting Algorithm

Assume in this subsection that there is an expression a and a rule r, which is
already known to match a with substitution σ stored in the varInst-array, and
the task is to apply r to a, of course taking into account the reusing-paradigm.
The rewriting algorithm consists of three steps:

1. Create references to (almost) all vertices of a

4 Version 1: The Interpreter 46

2. Copy the rhs-tree of r

3. Delete all unused vertices of a

Those three steps will be explained in detail in the next three subsections.

4.1.4.1 Step 1: Creating References

Creating references means: Fill the auxiliary exprArray-array with pointers to the
vertices of the tree corresponding to a. However, there is still one more definition
required:
Definition 22. Every vertex v of lhs(r) is associated to one vertex of a in the
following way:

• If v is a function, then, since r matches a, there must be also a function g
with the same name and the same arity at the same place in a. v is associated
to g.

• If v is a constant, then, since r matches a, there must be also a constant c
with the same name at the same place in a. v is associated to c.

• If v is a variable, then, at the same place in a, there might be any subtree.
v is associated to the root of that subtree.

The exprArray-array is filled in the following way (let n denote the size of the
LHS of r):
For all 0 ≤ i < n, the i-th element of exprArray points to the associated vertex
of the vertex at position i in lhs(r).

But there is one more thing that is done, too, when filling the exprArray-array:
The argument-pointers of every function-object, where really a function rather
than a variable of the rule is associated to, are set to NULL. This simply means
that all those functions somehow “forget” their arguments, although they still
exist; The only way how they can be accessed now is via exprArray.

4.1.4.2 Step 2: Copying the rhs-Tree

Copying a tree is done by copying its vertices and setting the edges accordingly.
Since there are five types of vertices in the rhs-tree and most of them are treated
differently, here is a detailed description how each of them is copied:

4 Version 1: The Interpreter 47

• Function: Copied by creating a new instance of class Function with the
same name as the original function. The arguments of the new object are
set to the copies of the arguments of the original function.

• Constant: Not copied at all, because there is only one instance of class
Constant for every constant. One could say that copying an object of type
Constant just returns the original object.

• Variable: Copied by copying its instance, which can be accessed via the
varInst-array.

• FunPosition: Not copied, but taken from a: If the value of the position-
member of the FunPosition-object is i, then copying returns the object
which is pointed to by the i-th element of exprArray; That pointer is after-
wards immediately set to NULL. The name of the “new” function is set to
the name of the FunPosition-object, and its arguments are set to the copies
of the arguments of the FunPosition-object.

• VarPosition: Similar to FunPosition-objects, but of course no name and
argument-array has to be set.

The last two items illustrate the concept of reusing existing objects: Instead of
copying FunPosition- and VarPosition-objects (by really creating new instances
of some classes), the existing objects from a are reused.

4.1.4.3 Step 3: Deleting Unused Vertices

The last step is the easiest one: Just go through the exprArray-array and delete
all non-NULL pointers which do not point to instances of class Constant. Note
that deleting an instance of class Function - in this version - also automatically
deletes all of its arguments. This is the reason why in step 1 they need to forget
them: Because some arguments might indeed be reused, although their parent is
not. Those arguments must of course not be deleted.

4.2 How To Use “Interpreter”

This section contains a short description of how “Interpreter” can actually be used
when run on a computer. First some general overview is given and then some
words are spent on input files.

4 Version 1: The Interpreter 48

4.2.1 General Overview

After starting the program, it first asks the user to provide a rule set. Since rule
sets are given by text files (see Section 2.5), it is enough to just enter the name
(including the file extension, for example “.txt”), and possibly also the path to
it. If the program finds the file, it opens it, reads the rules, and stores them.
Otherwise it returns an error message, and the user is asked to provide a different
file. However, instead of typing in the name of a file, it is also possible to just type
in the special command exit, which will immediately close the program.
Alternatively, the file containing the rule set can be passed as a command line
argument, too. In this case, the previously mentioned dialog is skipped.

From now on assume that the rule set has been successfully specified. This means
that the user may now type in arbitrary expressions, in the format explained in
Section 2.2, which, after hitting ENTER, are then rewritten using the given rules.
To see how this is done internally, please consult the sections on implementation, in
particular Section 3.5. The resulting expression is of course printed on the screen.
So, this is what one normally expects from a rewriting program, but still there are
lots of other things that can be done. For more information, consult the section
on special commands in the appendix (Section A).

Please note that there is also the possibility to call the program with at most two
command line arguments. If only one is provided, then it is the file containing the
rule set, as already described above. If both are provided, then the first one is
the rule set, and the second one has to be an input file (see next subsection). The
program terminates immediately as soon as all the expressions and commands in
the input file have been processed.

4.2.2 Input Files

Sometimes it is quite useful to rewrite whole sets of expressions at once, for example
when presenting a demo, performing tests and timing experiments, and so on. For
this purpose there are so-called input files, ordinary text files, just like rule sets,
containing line-by-line the expressions that have to be rewritten, among special
commands (Appendix A). Empty lines may be inserted as well in order to give
the document more structure; They are simply ignored when reading the file. The
results, however, are not printed on the screen, but rather written to another text
file (again line-by-line) located in the same directory as the input file, and having
the same name as the input file with the suffix “_out” appended (existing files
with such a name are overwritten). Please note that such an output file is also

4 Version 1: The Interpreter 49

*

succ succ

0 0

Figure 4.1: The varInst-array (left) pointing to the roots of the instances of the
variables m (top) and n (bottom)

equipped with a time stamp in its first line.
Input files may be given either as a command line argument (see information about
the individal versions), or by a special command (see Section A.7).

4.3 An Example

This example illustrates the rewriting process (not matching) on the basis of rewrit-
ing the expression

*[succ[0], succ[0]]

to the expression

+[*[succ[0], 0], succ[0]]

by applying the rule

Rule[VarList[m, n], *[m, succ[n]], +[*[m, n], m]]

once. Therefore, assume that the varInst-array (of length 2) has already been
filled in the matching process, and Figure 4.1 shows how it looks like.

The rhs-tree of the rule, after transforming it into a position tree, is shown in
Figure 4.2.

The subsequent figures all consist of five parts: On the very left, the varInst-array
is drawn; Right to it, the old expression is drawn as it currently is; In the center,

4 Version 1: The Interpreter 50

+

FP(0,*)

VP(1) VP(3)

m

Figure 4.2: The rhs-tree of the rule (FP(n,χ) means: FunPosition with name χ
and value of position equal to n; Similar for VP(n))

*

succ succ

0 0

+

FP(0,*)

VP(1) VP(3)

m

Figure 4.3: After performing step 1

the new expression is drawn; On the right-hand-side, the rhs-tree is drawn; At the
bottom, the exprArray-array is drawn. Blue arrows indicate pointers from the
varInst- and exprArray-array to tree-vertices.

4.3.1 Step 1: Creating References

Creating references means filling exprArray (of length 4) accordingly. The result
is given in Figure 4.3.

Please note that most of the edges in the tree are missing, because the functions
“forgot” their arguments. The only exception is the edge between the first succ-
and 0 vertices: This is due to the fact that this subtree is an instance of a variable
(m), and in such instances the arguments are still accessible by their parent func-
tions. For the same reason, there is no element in exprArray pointing to the first
0.

4 Version 1: The Interpreter 51

*

succ succ

0 0

+ +

FP(0,*)

VP(1) VP(3)

m

Figure 4.4: Copying the root by creating a new instance of the Function-class,
which becomes the root of the new expression

*

succ succ

0 0

+ +

FP(0,*)

VP(1) VP(3)

m

Figure 4.5: Copying the second vertex by taking an object from the old expression
. . .

4.3.2 Step 2: Copying the rhs-Tree

In this step, the rhs-tree is copied. This is done by successively copying its vertices.
In the following figures, the vertex that is currently copied is marked with a red
frame, and red arrows indicate how an object (and of course which object) is
accessed.

One very important remark: In the new expression, the first argument of function
* is exactly the same as in the old expression (Not only are they equal subtrees,
but even the same objects). This means that, if the function * would not have
forgot its first argument, the entire process of taking that argument from the old
expression and moving it to its new place (Figures 4.7 and 4.8) could have been
omitted. And this, of course, would make the rewriting even faster, because fewer
operations had to be carried out.
This idea is taken into account in Versions 2 and 3.

4 Version 1: The Interpreter 52

succ succ

0 0

+

*

+

FP(0,*)

VP(1) VP(3)

m

Figure 4.6: . . . and moving it to its new place and setting its name accordingly
(the pointer in exprArray is set to NULL)

succ succ

0 0

+

*

+

FP(0,*)

VP(1) VP(3)

m

Figure 4.7: Copying the third vertex by taking an object from the old expression
. . .

succ

0

+

*

succ

0

+

FP(0,*)

VP(1) VP(3)

m

Figure 4.8: . . . and moving it to its new place (its argument is not changed!)

4 Version 1: The Interpreter 53

succ

0

+

*

succ

0

+

FP(0,*)

VP(1) VP(3)

m

Figure 4.9: Copying the fourth vertex by taking an object from the old expression
. . .

succ

+

*

succ

0

0

+

FP(0,*)

VP(1) VP(3)

m

Figure 4.10: . . . and moving it to its new place

succ

+

*

succ

0

0

succ

0

+

FP(0,*)

VP(1) VP(3)

m

Figure 4.11: Copying the last vertex by copying the instance of variable m

4 Version 1: The Interpreter 54

+

*

succ

0

0

succ

0

Figure 4.12: The final result after deleting unused objects

4.3.3 Step 3: Deleting Unused Vertices

In this last step, all the unused vertices of the old expression are deleted. In this
concrete example, there is only one such object, namely the succ-object. Recall
that it is exactly those objects which are still pointed to by elements of exprArray
that have to be deleted. Figure 4.12 shows the final result, which is exactly what
it is supposed to be.

Chapter 5

Version 2: The Compiler

The next version that has been created, in the following simply called “Compiler”,
is very different to the previous one, the interpreter. As its name already suggests,
it is a compiler, i. e. it transforms rule sets, given as explained in Section 2.5,
into executable programs. It does so by creating C++ source- and header files
containing the code that implements the rules, so to say, that have to be compiled
into executable programs by an external C++ compiler afterwards. The reason
for all this is obvious: It is a well-known fact that compiling is in general more
efficient than interpreting, and since this thesis is all about making things more
efficient, it is only natural to also try out this approach (Of course, the main idea
of this thesis of reusing objects is taken into account as well).

The outline of this chapter is the following:
First, the main algorithms and their implementation are presented, as well as the
most important classes and their hierarchy in the implementation. However, when
talking about “implementation”, it is important to distinguish between the imple-
mentation of the compiler itself and the implementation of the compiled programs.
The latter one is dealt with first, followed by a detailed description of all the com-
piler’s main algorithms and their implementation.
Afterwards, a short description of how the compiler and the compiled programs
are used is provided.
The chapter ends with a simple example that illustrates what exactly the out-
put of the compiler is and how a given expression is rewritten by it (after being
transformed into an executable program, of course).

55

5 Version 2: The Compiler 56

5.1 Implementation of the Compiled Programs

In principle, the implementation of a compiled program, in the sequel denoted as
P , is very similar to that of Version 1, with one big difference: Since P already
depends on a rule set R, the implementation of the rules is completely different.
Although there is still a class Rule, this one only serves as an abstract base class
for all the classes implementing the rules in R. Namely, if r is the i-th rule in
R (starting from 0), then there is a derived class of class Rule, called Rulei,
which implements r (and only r) by overriding the two virtual functions match
and rewrite of the base class. The meanings of those two functions are rather
obvious: The first one takes an expression and checkes whether it is matched by
r; The second one takes an expression that is already known to be matched by r
and returns the result of rewriting it w. r. t. r.

Apart from the two functions match and rewrite there are also some other mem-
bers of the base class Rule that are not overridden:

Expression **exprArray This static member is intended as a replacement for
local variables of type Expression* in the match- and rewrite-functions. This
means that, whenever a local variable would be needed, instead a free element of
exprArray is taken. The reason behind this concept is that now, when calling
e. g. rewrite, no local variables (of type Expression*) have to be pushed to the
program stack, which makes the execution a bit faster.
Since exprArray is shared by all rules (that means, the functions of every derived
class may use it), its length is the maximum of the numbers of the auxiliary
variables of type Expression* needed in all of the functions match and rewrite.
It is allocated and deleted only once.
Please also note that unlike in Version 1, the elements of exprArray have no deeper
meaning any more (like “element 0 always points to the root of the expression that
is rewritten”).

Function deleteArray This function is called before the program terminates.
Its only task is to delete exprArray.

Function makeSymbols This function fills the RuleSymbols-array of class
Expression with all the symbols occuring in R (see Section 3.1). In this version,
unlike in Version 1, two lists of symbols are used: One for the symbols appearing
in the rule set and one for the symbols appearing only in the expressions typed in
at run-time.

5 Version 2: The Compiler 57

Function makeConstants This function fills the RuleConstants-array of class
Constant with all the constants occuring in the rules, because, just as in Version 1,
there is only one instance of class Constant for every constant (see Section 3.2.2).
In this version, unlike in Version 1, two lists of constants are used: One for the
constants appearing in the rule set and one for the constants appearing only in
the expressions typed in at run-time.

Function makeRules This function basically returns an array of underlying type
Rule* whose length is exactly the number of rules inR. For any i, the i-th element
points to an instance of the derived class Rulei. It is exactly this array that is
iterated through when an expression is attempted to be rewritten, by calling first
the match- and, in case of success, the rewrite-function of its elements.

The rules are implemented in the two files “Rules.h” and “Rules.cpp” (note the
plural!) which are both automatically generated by the compiler. The only things
of interest are, of course, the definitions of the two functions match and rewrite,
and that is exactly what the next subsection deals with.

Please also note that there are no FunPosition- and VarPosition-classes in the
Expression-hierarchy any more, since they are simply not needed: The mapping
from the LHS to the RHS of a rule is defined by the compiler and, so to say,
hard-coded in the definition of the rewrite-function. The same applies for the
varInst-array: In Version 1 it is used for storing the instances of the variables
when matching an expression; In this version, it is not needed any more.

5.2 Algorithms and Implementation of the Com-
piler

The compiler does two things: It first reads the rules of a rule set R, creates their
internal representation and stores them, and then creates the two files “Rules.h”
and “Rules.cpp” containing the implementation of R.
The first part is done quite analogously to Version 1: There is again a class Rule
containing, among others, two pointers to the expressions representing the LHS
and RHS of that rule, and so on. The only difference is that in this version
the rhs-tree is not transformed into a position tree, but left as it is. Hence, in
the implementation of the compiler there are no FunPosition- and VarPosition-
classes.
The interesting part is of course the second part, because that is where mappings

5 Version 2: The Compiler 58

are considered and the eventual C++ source code is created. This is also where
the focus of the current section lies, however, the most important things are the
definitions of the match- and rewrite-functions, or more precisely, how they are
created.

5.2.1 Class Rule

Some words about class Rule and its most important members: As in Version 1,
this class represents rules. It has two pointers of type Expression*, called lhs
and rhs, pointing to the LHS and RHS of the rule, respectively. The parsing
is done in completely the same way as in “Interpreter” with the static function
fromString. However, there are no match- and rewrite-functions any more,
because instances of class Rule do not have to match and rewrite expressions, but
rather to create C++ source code that takes care of that. Therefore, there are
the two functions toHeader and toSource: The first one returns, as a string, the
C++ class declaration for the rule; The second one returns, again as a string, the
C++ function definitions for the match- and rewrite-functions.

The most important function of class Rule is the function makeCode. This func-
tion really creates the command-sequence (see Section 5.2.3) that implements the
rewrite-function. It depends on two important auxiliary functions, which are
members of class Rule as well, namely findBestMapping and findBestPaths. A
detailed information about what those functions do can be found in Section 5.2.4.

Class Rule also consists of lots of private variables; Mentioning all of them would
lead to far, since most of them are only auxiliary variables that are only needed
in some very special parts of function makeCode. However, some are indeed of
interest:

int *exprArrayIndex This array, whose length is the size of the LHS, is used
for storing meta-information about the vertices of the lhs-tree. The meaning of
single elements varies depending on which part of the main function makeCode is
currently executed. More information can be found in Section 5.2.4.4.

Expression **bestInvMap This array, whose length is the size of the RHS, is
used for storing an arity preserving mapping from the RHS of the rule to its LHS
(That’s why the name “Inv”: Normally, mappings from the LHS to the RHS are
considered). It is filled in function makeCode: If the i-th element points to the
vertex at position j, then i → j is an element of the mapping; If it points to

5 Version 2: The Compiler 59

NULL, then i→ −1 is an element. Originally, arity preserving mappings from the
LHS to the RHS are considered, but since all of them also have an arity preserving
inverse (Section 2.8) and the original mappings are not needed, only the inverse
mappings are stored (more precisely: one of them). How this mapping looks like
is explained in Section 5.2.4.

CommandList rewriting This variable is used for storing a sequence of instances
of class Command (see Section 5.2.3), namely the commands that eventually really
define the rewrite-function. Again, it is filled in the main function makeCode.

5.2.2 Constructing Function match

In this version, the definition of function match is solely created in function
toSource (unlike in “Compiler/SV”). In fact, matching is again rather straight-
forward (assume that a is the expression that is attempted to be matched):

1. First, the overall shape of a is checked: If there is an n-ary function in the
LHS of the rule, is there also an n-ary function with the same name at the
same position in a? If there is a constant in the LHS, is the same constant
at the same position in a?

2. Afterwards it is checked whether multiple occurences of the same variable
are instantiated with equal subexpressions of a.

Now to the implementation of the algorithm that creates the C++ function defi-
nition of function match (in function toSource):
The first part (shape) is implemented in a recursive manner by the function
createMatchingCode of class Expression, which is called on lhs. This function
requires several arguments, one of them is a list of available exprArray-indices:
Since the exprArray-array replaces local variables in both the match- and rewrite-
function, it is very important to know, at any time, which indices are available and
which not. An index i is available iff the i-th element of exprArray can be set
without overwriting a pointer that is still needed.
The second part (variable instances) is implemented by just iterating through all
variables that occur more than once and comparing the subexpressions of a at
their respective positions. If they are all equal, a is matched by the rule.
However, there is one thing missing that is not done in function toSource, but in
the main function makeCode, namely computing the number of “local” variables
of type Expression* needed for matching. Since the array exprArray is used for

5 Version 2: The Compiler 60

representing those variables, it has to be made clear what size this array should
have. Function countMatchingSize of class Expression, called on lhs, does the
job. Of course the size does not only depend on the definition of function match
but also on the definition of function rewrite.

The following example shows the definitions of the function match of all the rules
of a given rule set R:

R =
Rule[VarList[m, n], *[m, succ[n]], +[*[m, n], m]]
Rule[VarList[x], f[x, x], g[x]]
Rule[VarList[x, y], f[x, 0, y, g[x]], 0]

Part of file “Rules.cpp” (automatically generated by the compiler):
1 bool Rule0 :: match (Expression *expr){
2 if (expr -> isFunction (Expression :: RuleSymbols + 0, 2) &&
3 expr -> getArgument (1)-> isFunction (Expression :: RuleSymbols + 1, 1)){
4 return true ;
5 }
6 return false ;
7 }
8
9 bool Rule1 :: match (Expression *expr){

10 if (expr -> isFunction (Expression :: RuleSymbols + 3, 2)){
11 if (expr -> getArgument (0)-> equals (expr -> getArgument (1))) return true ;
12 }
13 return false ;
14 }
15
16 bool Rule2 :: match (Expression *expr){
17 if (expr -> isFunction (Expression :: RuleSymbols + 3, 4) &&
18 expr -> getArgument (1) == Constant :: RuleConstants + 0 &&
19 (exprArray [0]= expr -> getArgument (3)) - > isFunction (Expression :: RuleSymbols +4 ,1)){
20 if (expr -> getArgument (0)-> equals (exprArray [0]-> getArgument (0))) return true ;
21 }
22 return false ;
23 }

Note that the content of Expression::RuleSymbols is [*, succ, +, f, g, 0]
and that the only element of Constant::RuleConstants is constant 0.

5.2.3 Commands

In C++, the definition of a function is given by a sequence of commands, like
assignments, conditions, loops, function calls, etc. Hence, for any rule r, the
definition of its rewrite-function is also given by such a sequence. Now there are
at least two possibilities: Either the commands are immediately written, as C++
code, to the file, or they are first represented as a list of comands and then this

5 Version 2: The Compiler 61

list is written to the file as C++ code. In principle, the first approach is not that
bad, but the implementation of “Compiler” (and also “Compiler/SV”) uses the
second approach, for the following reason: After creating the function definition in
terms of a list of commands, this list can be easily manipulated later on. This is
especially important if it should be additionally optimized after creation in order
to make the function implementation even more efficient. If the commands were
immediately written to the file, that task would be rather cumbersome.

In any case, before going into detail and describing how such a list of commands
is created in Section 5.2.4, it has to be made clear what commands there are:

• Setting a variable of type Expression* (either an element of exprArray or
the root of the old expression)

• Setting the name of functions

• Deleting expressions

• Setting arguments of functions

• Creating new functions

• Copying expressions

Obviously there are neither conditions nor loops, but that does not mean that
the complexity of rewrite-functions is always constant. For example, copying an
expression requires every vertex of the corresponding tree to be copied, and thus
the complexity clearly depends on the size of that tree. Have a look at Section 8.1
for more information.

The next thing that needs to be explained is how those commands are implemented:
Once again, there is an abstract base class Command all the derived classes inherit
from; For each of the previously mentioned commands there is such a derived class.
In fact, there are even a bit more, listed below. The motivation for structuring the
command-classes in such a way is quite apparent: The commands will be stored
in a list, but since the elements of the list are most likely different commands, and
therefore also have different types, one supertype (Command) is needed to put them
all into one single list. This is a commonly-used strategy, called type-polymorphism
(see [14] for more information).
Note that there is a class ExprArrayIndex. This class is very simple and only
implemented for convenience. It only consists of the member i of type int, and
its only purpose is the following: Whenever an instance of that class is written to
a C++ source file, it is written as exprArray[i] if i is non-negative, and as expr

5 Version 2: The Compiler 62

otherwise. In the rewrite-function expr denotes the root of the expression that
is to be rewritten.

In the following list of commands, whenever a variable, say index, is displayed in
italic letters, this simply means “value of index”. The value of an object of type
ExprArrayIndex is always either exprArray[i] or expr (see above).

CAssignment This class consists of two indices lhs and rhs of type
ExprArrayIndex (one for the LHS of the assignment, one for the RHS) and a list
of non-negative argument-indices arg of type int. The C++ code corresponding
to an instance of this class is the following:

lhs = rhs->getArgument(arg[0])...->getArgument(arg[Length(arg)− 1])

The effect of executing this command is that afterwards lhs points to the expression
on the RHS of the assignment.

CSetName This class only consists of one index index, again of type
ExprArrayIndex, and the index of a symbol nameIndex of type int. The C++
code corresponding to an instance of this class is the following:

index->setName(Expression::RuleSymbols + nameIndex)

The effect of executing this command is that, if index points to a function f , the
name of f is set to the nameIndex-th symbol in the list of symbols.

CDelete This class basically consists of one index lhs of type ExprArrayIndex
and one argument-index arg of type int. The C++ code corresponding to an
instance of this class is the following:

index->getArgument(arg)->deleteObject()

If arg is negative, the getArgument-part is omitted. The effect of executing this
command is simply that the object is deleted.

5 Version 2: The Compiler 63

CNewFunction This class consists of one index lhs of type ExprArrayIndex, the
index of a symbol nameIndex of type int, and the arity of the new function arity
of type int. The C++ code corresponding to an instance of this class is the
following:

lhs = new Function(Expression::RuleSymbols + nameIndex, arity)

This command creates a new function with arity arity, whose name is the
nameIndex-th symbol in the list of symbols, and makes lhs point to it.

CReuseObject This class consists of two indices lhs and index of type
ExprArrayIndex and one argument-index arg of type int. The C++ code
corresponding to an instance of this class is the following:

lhs->setArgument(index, arg)

Executing this command simply sets the arg-th argument of the function pointed
to by lhs to the object pointed to by index.

CCopyObject This class consists of the same members as class CReuseObject.
The C++ code corresponding to an instance of this class is the following:

lhs->setArgument(index->copy(), arg)

Executing this command basically does the same as the command before, except
that the new argument is not the object pointed to by index itself, but a copy of
it.

CSetConstant This class consists of the same members as class CReuseObject.
The C++ code corresponding to an instance of this class is the following:

lhs->setArgument(Constant::RuleConstants + index, arg)

Executing this command sets the arg-th argument of the function pointed to by
lhs to the index-th constant in the list of constants.

5 Version 2: The Compiler 64

Now that it should be clear what commands there are and how they are imple-
mented, let’s move on and see how command sequences are created.

5.2.4 Constructing Function rewrite

In principle, one could do basically the same as in Version 1: Generate a mapping
from the LHS of the rule to its RHS and then, instead of executing the three
steps of the algorithm (Section 4.1.4), create the command sequence that does
the same job when executed. Surely such an approach would work, and indeed
this is in principle the approach that is pursued, but still there are two additional
improvements.

Recall the remark at the end of the second step in the example showing how
the algorithm of Version 1 works. There it was mentioned that, given a concrete
mapping µ, some parts of the LHS are preserved by µ, which means that each
vertex in such a part on the LHS is mapped to exactly the same place in the
corresponding part on the RHS. Note that “part” does not have the same meaning
as “subtree”: Again, every part has a root, but in contrast to subtrees, not all
children of the root have to be in the part as well; It is even possible that no
children are in the part. A more formal definition is the following:
Definition 23. Let T be a tree and V its set of vertices. The set A ⊆ V forms a
part of T iff there is a vertex r ∈ A such that for any other vertex v ∈ A:

1. v is a successor of r

2. Every vertex on the unique path from r to v is also an element of A

The (uniquely defined) vertex r is called root of the part.

Every subtree is a part, but not vice versa; The following are some examples of
parts of one and the same tree (vertices belonging to the part are printed in red
letters; the root of the part is underlined):

• v0

v1

v2

v3 v4

v5 v6

v7

v8

5 Version 2: The Compiler 65

• v0

v1

v2

v3 v4

v5 v6

v7

v8

• v0

v1

v2

v3 v4

v5 v6

v7

v8

Before it can be defined what it means that a mapping preserves a part, the notion
of path tuples has to be defned.

Definition 24. Let T be a tree, v, u vertices such that u is a successor of v or
u = v. Then there is one unique path P from v to u. This path P has an associated
path tuple, a tuple of Natural numbers denoted as pt(P), which is given as follows:

1. If v = u then pt(P) = 〈〉

2. Otherwise v has to be a node and u has to be either a successor of its i-th
child or the i-th child itself, for some i ≥ 0. Let Pi denote, in any case, the
path from the i-th child to u. Then pt(P) = 〈i〉^ pt(Pi), where “^” stands
for concatenation.

Definition 25. Let T1, T2 be trees, A a part of T1 with root r, and µ an arity
preserving mapping from T1 to T2. A is preserved by µ iff

1. No vertex in A is mapped to ∅

2. The images of the elements in A form a part in T2 with root µ(r)

3. For any v ∈ A let P1 be the path (in T1) from r to v and P2 the path (in T2)
from µ(r) to µ(v). Then pt(P1) = pt(P2)

If a part is preserved by a mapping µ this only means that the image of that part
is again a part with the same shape. A vertex v being in such a part simply means
that µ(v) 6= ∅, or in other words, v is reused.

5 Version 2: The Compiler 66

Obviously, whenever there are parts of the LHS that are preserved by a concrete
mapping, it would suffice to only move the root to its new place - The rest of the
part would then be automatically at the correct place as well, if the edges between
the vertices were not forgotten as in “Interpreter” (edges originating from a node
correspond to the pointers of a function that point to its arguments). Exploiting
this fact saves operations when actually transforming the tree, which of course
makes the rewriting process faster.

Improvement 1 Given the mapping µ that describes which objects are reused
in which way, detect parts of the LHS that are preserved by µ and do not perform
(more precisely: create) redundant operations/commands.

Improvement 1 saves operations and thus decreases the execution time. Hence, the
more often it can be applied (the more vertices there are that belong to a part of
the LHS with cardinality of at least 2 that is preserved by µ), the better. However,
how often it can be applied depends of course on µ. This observation immediately
leads to the second improvement.

Improvement 2 From all arity preserving mappings from the LHS of a rule
r to its RHS, choose the one where Improvement 1 can be applied most often,
i. e. where the total number of operations required for applying r is minimal when
Improvement 1 is taken into account.

Those operations/commands that are mentioned several times above are of course
the ones defined in Section 5.2.3.

5.2.4.1 Implementation of Improvement 2

Improvement 2 is implemented in a brute-force way: Simply try out all arity pre-
serving mappings from the LHS to the RHS of the rule, for each mapping compute
the total number of operations required for rewriting an expression following that
mapping and taking into account Improvement 1, and eventually choose the map-
ping where the number of operations is minimal. This algorithm is implemented
by the function findBestMapping, which recursively goes through all the arity
preserving mappings and computes the number of operations by calling the two
functions countCopyingOps and countMissingOps of class Expression and then
the function findBestPaths of class Rule (Section 5.2.4.3). Please note that the
operations themselves are not created (in terms of a command sequence), but only
their number is computed!

5 Version 2: The Compiler 67

Now it is also easy to see why it is the arity preserving mappings that are consid-
ered: Recall from Section 2.8.1 that arity preserving mappings “ignore” constants
(→ There is only one instance of class Constant for each constant) and map
functions to functions with the same arity (→ Number of arguments of Function-
instances are fixed in the implementation of “Compiler”).

5.2.4.2 Implementation of Improvement 1

Improvement 1 is implemented in a straight-forward way: Given the lhs- and
rhs-tree of a rule together with a mapping it is rather easy to find out which
arguments of a concrete function f are mapped to arguments at the same place
of the image of f . For all such arguments the algorithm is applied recursively
until there are no more. The union of all those vertices surely forms a part that
is preserved. Improvement 1 is implemented several times:
First, it is implemented in functions countCopyingOps and countDeletingOps of
class Expression that call each other recursively and compute (one part of) the
number of required operations. Depending on where a vertex is located in the
LHS (root of a part that is preserved, root of a part that is not preserved, not
root of a part that is preserved, not root of a part that is not preserved), different
values for that number are returned.
Second, it is implemented in function fillEAI of class Expression. This function
modifies the meta-information of the lhs-tree stored in the exprArrayIndex-
array of class Rule; Consult Section 5.2.4.4 for more information about
exprArrayIndex.
Third, it is implemented in functions createCopyingCommands and
createCreatingCommands of class Rule that eventually really generate the
command sequence and hence also need to take into account Improvement 1.

5.2.4.3 Function findBestPaths

This function covers one minor but nonetheless important detail of computing the
number of required operations, given a mapping µ. Assume that in the LHS of the
rule there is a variable x that is not the root of any part that is preserved by µ,
and x occurs more often on the RHS of the rule than on its LHS. Thus, x, or more
precisely its instance, needs to be copied at least once when applying the rule and
creating the new expression. However, since x is not the root of any preserved
part, its instance will possibly never be accessed (stored somewhere in exprArray)
in the function rewrite, since this is exactly the purpose of Improvement 1! So,
if x’s instance (more precisely: the root of it) is not stored in exprArray, how can

5 Version 2: The Compiler 68

it be copied then? Surely, the positions of its instances are known (there might be
more than one instance, which are of course all equal), so whenever x needs to be
copied the algorithm could simply traverse the tree until it reaches such an instance
and copy it. Still, this is rather inefficient, especially if x needs to be copied more
than once. So, why not just store one of its instances in exprArray? Indeed, this
is the way how it is done. But now immediately the next question arises: Which
instance, if there are more than one? The answer seems to be obvious: Choose
the one that is nearest to the root of the preserved part it is included in, since
it can be reached in shortest time then. However, the actual answer is not that
easy: Assume that there is not only one such variable, but several. The best way
of choosing the instances that are to be stored in exprArray is then the following:
Minimize the total length of the paths leading from the roots of the respective
preserved parts to those instances, where all parts of these paths that are shared
by multiple paths are counted only once.

The following examples illustrate the idea from above. The trees always represent
the LHS of a rule, and the two variables x and y always occur more often on the
RHS of the corresponding rule and are never the root of a preserved part; Preserved
parts have a frame around them. The occurences that are eventually chosen for
being stored are printed in red; All vertices on the path to such an occurence that
are not automatically stored in exprArray are printed in blue.

• v0

v1

v2

x

v4

v5

v6

x y

Total length = number of blue vertices = 2
If the first instance of x was chosen, the total length would be 3, although
this instance occurs somewhere nearer to the root.

5 Version 2: The Compiler 69

• v0

v1

v2

x

v4

v5

v6

x y

v9

v10

y

Total length = 2
In all other cases, the total length would at least be 2 as well, although there
are occurences of both x and y that are nearer to the root.

In function findBestPaths again a brute-force strategy is pursued: For every
variable try all occurences and count the number of vertices that have to be addi-
tionally accessed. In the end, that number is added to the number of operations.

5.2.4.4 The exprArrayIndex-Array

As already mentioned before, the meaning of an element of the exprArrayIndex-
array varies depending on its position in the makeCode-method. Basically, there
are two different meanings:

Right after computing the best mapping and before calling fillEAI on lhs, the
meaning is the following (recall that every element of exprArrayIndex is of type
int and corresponds to a vertex v in the lhs-tree):

• 0: v is a constant; Constants can be ignored in the whole process, since
there is only one instance of class Constant for every constant, which means
that they do not have to be considered when finding the best mapping (arity
preserving mappings map constants to ∅).

• -1: v does not have to be stored in exprArray, because it is in a preserved
part (and not the root of that part)

• -2: v needs to be stored permanently in exprArray, because it is the root of
a preserved part

• -3: v needs to be accessed and thus stored temporarily, because although it
is in a preserved part (and not root of that part), some successor of it needs
to be accessed

5 Version 2: The Compiler 70

• -4: v is a node that has to be deleted (not in a preserved part) and thus
needs to be stored temporarily, because in this case surely all of its children
need to be accessed

• -5: v is no node and deleted and thus does not have to be stored

• -6: v is the root of a preserved part and mapped to the root of the RHS

• -7: v is a variable that needs to be stored because of the idea explained in
Section 5.2.4.3

• -8: v needs to be stored permanently only because some successor of it is a
variable where exprArrayIndex is -7

• -9: v is a function that needs to be stored permanently, because its name
has to be changed

There is a difference between an object that is stored permanently and an object
that is stored only temporarily: As in Version 1, the rewriting-function can be
structured into steps: In the first step, pointers are created that point to some
objects, and some other objects are deleted (subsumes the first and the third step
of Version 1), and in the second step the new expression is created. If a vertex is
stored permanently this means that it needs to be accessed in the second step; If
it is only stored temporarily this means that some successors have to be accessed
in the first step, but afterwards it is not needed any longer. That difference is
particularly important, because whenever a temporarily stored object does not
have to be accessed any more, the corresponding element in exprArray can be
used for something else.

When the function fillEAI is called on lhs, with exprArrayIndex as its argu-
ment, the meaning of an element of the array changes. Still, for any index i let v
be the corresponding vertex in the lhs-tree:

• i = 0: v does not have to be stored in exprArray at all

• i = −1: v is mapped to the root of the RHS

• i > 0: v is the root of a preserved part and has to be stored in exprArray
at index i− 1

• i < −10: v is not the root of a preserved part (yet it is in a preserved part)
and has to be stored in exprArray at index −i− 11

5 Version 2: The Compiler 71

As can be seen, exprArrayIndex now does not only contain information whether
a vertex has to be stored or not, but if so also where. The fact that temporarily
stored objects do not have to be pointed to all the time (can be “forgotten” by
exprArray) is taken into account: As soon as that happens, the corresponding
index of the exprArray-array is immediately made available for the next object
that needs to be stored, which of course saves some memory when executing the
compiled program.

5.2.4.5 Generating the Command Sequence

As already mentioned above, the rewrite-function always consists of two steps.
In the first step, the exprArray-array is filled with pointers to some objects and
all objects that are not reused are deleted. In the second step, the new expression
is eventually created.
Functions createCopyingCommands and createDeletingCommands of class
Expression generate the commands that implement the first step. They do so by
going through the lhs-tree and, for every vertex, mainly depending on the value
of the corresponding element of exprArrayIndex, adding one instance of one of
the two command-classes CAssignment (for storing in exprArray) and CDelete
(for deleting) to the command sequence.
Function createCreatingCommands, again of class Expression, generates the
commands that implement the second step. It does so by going through the
rhs-tree and, for every vertex, mainly depending on the value of the corresponding
element of bestInvMap, adding one instance of some of the other derived classes
of class Command to the command sequence.

5.2.4.6 Optimizing the Command Sequence

Optimizing the command sequence is one of the very last things that are done in
function makeCode. There are two things that are optimized a little bit:

• Chains of assignments are put together into one assignment, which means
that if the command sequence contains, for example, the subsequence (in
C++ code)

exprArray[0] = expr->getArgument(0);
exprArray[0] = exprArray[0]->getArgument(1);
exprArray[0] = exprArray[0]->getArgument(2)

5 Version 2: The Compiler 72

that does nothing else than making the first element of exprArray point to
the third child of the second child of the first child of the root of the old
expression, then this sequence is replaced by the one and only command

exprArray[0] =
expr->getArgument(0)->getArgument(1)->getArgument(2);

that does exactly the same. Obviously, the time complexity of the function
is not reduced by this optimization.

• Index-holes of exprArray are filled, which means that if, say, the third
element of exprArray is not used within the entire definition of function
rewrite, but the fourth element is, then instead of using the fourth element
the third one is used. Thus, in every occurence of ExprArrayIndex with
the value of its member i equal to 3 (the fourth element) in the command
sequence, the value of i is replaced by 2 (the third element). Obviously, do-
ing this eventually saves memeory, because the size of exprArray is reduced.
Note that the requested size of exprArray for function rewrite is computed
right when performing this optimization.

5.3 How To Use “Compiler”

The name of this version already indicates what it is expected to do. It is expected
to work as a compiler, which means it should produce programs with certain prop-
erties, and indeed, this is exactly what it does. Given a rule set, it automatically
generates C++ source- and header files that implement just those rules. If the
files are then compiled with an external C++ compiler, the result is a program
P working quite similar as “Interpreter” (Version 1), apart from the fact that, of
course, no rule set needs to be specified any more after starting it, because its
implementation already depends on such a rule set. The reason behind this ap-
proach is to make the rewriting process even faster - successfully, as can be seen
in Chapter 7.

The compiler itself works quite simple. It has to be executed with at least one
command line argument, which, just like in the previous version, has to be the
name and path of the file containing the rule set that shall be processed. For this
rule set the two files “rules.h” and “rules.cpp” are then generated and stored in the
directory “source”, located in the same directory where the compiler is located,
too. Together with the other files in that directory they form the C++ source
of the program P described above; However, all other files are left unchanged,

5 Version 2: The Compiler 73

because they are independent of the concrete rule set.
As already mentioned above, the compiler might be called with even more than
only one command line argument. In fact, it is possible to provide the C++ com-
piler together with some arguments (no source- and target files) to the rewriting
compiler, in order to immediately compile the C++ files and get the desired pro-
gram P , whose name is then the same as the one of the rule set, and which is
stored in the same directory as the rule set. But of course it is also possible to
first generate the files and then call the C++ compiler separately.

The generated programs work very similar to “Interpreter” (see Section 4.2). The
only differences are:

• After starting them, no rule set needs to be specified any more

• Some of the special commands do not work here; They are marked with “*”
in the appendix (Appendix A)

• They may be called with at most one command line argument; In this case,
the argument has to be an input file (Section 4.2.2)

5.4 An Example

This example illustrates both the behavior of the compiler and the behavior of a
compiled program. Therefore let the rule set R consist of the one and only rule

Rule[VarList[x,y], f[g[g[x]],f[g[y],x]], f[f[x,f[0,x]],h[g[x]]]]

The tree representation of the LHS and RHS of the rule is shown in Figure 5.1.

f

g

g

x

f

g

y

x

f

f

x f

0 x

h

g

x

Figure 5.1: The LHS and RHS of the rule, represented as trees

There are in total 216 arity preserving mappings from the LHS to the RHS of
the rule (3 for the first binary function, 2 for the second binary function, 3 for

5 Version 2: The Compiler 74

the first unary function, 2 for the second unary function, 1 for the third unary
function, 3 for the first occurence of x, 2 for the second occurence of x, 1 for y;
see Section 2.8.3). The best of those mappings w. r. t. the number of operations,
as computed automatically by the compiler, is given by

{0→ 0, 1→ 6, 2→ 7, 3→ 8, 4→ 3, 7→ 5}

A graphical representation of the mapping is shown in Figure 5.2.

f

g

g

x

f

g

y

x

f

f

x f

0 x

h

g

x

Figure 5.2: The best mapping, indicated by blue arrows - Preserved parts with at
least two elements are framed

The content of exprArrayIndex, both before and after calling function fillEAI,
is shown in Figure 5.3. Instead of presenting the flat array, the complete tree
representation of the LHS is shown where the names of the vertices are replaced
by the value of the corresponding element of exprArrayIndex. Please note that
there are two vertices with exprArrayIndex equal to -13; This is due to the fact
that the first one only needs to be stored temporarily, hence the index is again
available afterwards.

The length of the resulting command sequence, as computed before the commands
themselves have been generated, is 13:

• Concerning the first step in function rewrite (setting pointers, deleting ob-
jects): 4 commands for storing the 4 vertices whose exprArrayIndex after
executing fillEAI is either > 0 or < −10, and 2 commands for deleting
the objects that are not needed any more (exprArrayIndex before executing
fillEAI is equal to -4 or -5)

5 Version 2: The Compiler 75

-6

-2

-1

-1

-2

-4

-5

-7

-1

1

0

0

2

-13

0

-13

Figure 5.3: exprArrayIndex right after finding the best mapping (left) and after
executing function fillEAI (right)

• Concerning the second step (creating the new expression): 2 commands for
creating the binary function that is not available in the old expression and
moving it to the right place, 1 command for copying the instance of variable
x and moving it to the right place, 2 commands for moving the vertices
with positive exprArrayIndex (again after executing fillEAI) to the correct
place, 1 command for setting the constant 0, and 1 command for changing
the name of one of the unary functions into h

The following is the resulting C++ source code, where each line in the definition
of the function (apart from the last one) stands for exactly one command of the
command sequence:

1 Expression * Rule0 :: rewrite (Expression *expr){
2 exprArray [0] = expr -> getArgument (0);
3 exprArray [1] = expr -> getArgument (1);
4 exprArray [2] = exprArray [1]-> getArgument (0);
5 exprArray [2]-> getArgument (0)-> deleteObject (false);
6 exprArray [2]-> deleteObject (true);
7 exprArray [2] = exprArray [1]-> getArgument (1);
8 exprArray [3] = new Function (Expression :: RuleSymbols + 0, 2);
9 expr -> setArgument (exprArray [3] , 0);

10 exprArray [3]-> setArgument (exprArray [2]-> copy (), 0);
11 exprArray [3]-> setArgument (exprArray [1] , 1);
12 exprArray [1]-> setArgument (Constant :: RuleConstants + 0, 0);
13 exprArray [0]-> setName (Expression :: RuleSymbols + 3);
14 expr -> setArgument (exprArray [0] , 1);
15 return expr;
16 }

Without taking into account the very last instruction that only returns the new
expression, the definition indeed contains exactly 13 commands. Please note that
the content of array Expression::RuleSymbols is [f, g, 0, h], the only ele-
ment of Constant::RuleConstants is constant 0, and that expr points to the
root of the tree representing the expression that is to be rewritten. The size of
exprArray obviously is 4 (unless function match needs even more elements, which
is not the case in this example). In lines 5 and 6 there are two different ways
of deleting objects. In line 5, where the argument of the function deleteObject

5 Version 2: The Compiler 76

f

g

g

a

b

f

g

c

d

a

b

Figure 5.4: After executing line 2: exprArray[0] = expr->getArgument(0)

f

g

g

a

b

f

g

c

d

a

b

Figure 5.5: After executing line 3: exprArray[1] = expr->getArgument(1)

is the boolean value false, not only the object itself, but also the entire subtree
originating at the object is deleted. In line 6, only the object is deleted.

Figures 5.4 to 5.16 illustrate the execution of the function line-by-line when rewrit-
ing the expression f[g[g[a[b]]],f[g[c[d]],a[b]]] (that is obviously matched
by the rule), where the upper part of each figure is dedicated to the expression as it
is in the respective execution step, and the lower part shows the exprArray-array
and where its elements point to.

5 Version 2: The Compiler 77

f

g

g

a

b

f

g

c

d

a

b

Figure 5.6: After executing line 4:
exprArray[2] = exprArray[1]->getArgument(0)

f

g

g

a

b

f

g

#

a

b

Figure 5.7: After executing line 5:
exprArray[2]->getArgument(0)->deleteObject(false)

5 Version 2: The Compiler 78

f

g

g

a

b

f

a

b

Figure 5.8: After executing line 6: exprArray[2]->deleteObject(true)

f

g

g

a

b

f

a

b

Figure 5.9: After executing line 7:
exprArray[2] = exprArray[1]->getArgument(1)

5 Version 2: The Compiler 79

f

g

g

a

b

f

a

b

f

Figure 5.10: After executing line 8:
exprArray[3] = new Function(Expression::RuleSymbols + 0, 2)

f

g

g

a

b

f

a

b

f

Figure 5.11: After executing line 9: expr->setArgument(exprArray[3], 0)

5 Version 2: The Compiler 80

f

g

g

a

b

f

a

b

f

a

b

Figure 5.12: After executing line 10:
exprArray[3]->setArgument(exprArray[2]->copy(), 0)

f

g

g

a

b

f

a

b

f

a

b

Figure 5.13: After executing line 11:
exprArray[3]->setArgument(exprArray[1], 1)

5 Version 2: The Compiler 81

f

g

g

a

b

f

0 a

b

f

a

b

Figure 5.14: After executing line 12:
exprArray[1]->setArgument(Constant::RuleConstants + 0, 0)

f

h

g

a

b

f

0 a

b

f

a

b

Figure 5.15: After executing line 13:
exprArray[0]->setName(Expression::RuleSymbols + 3)

f

h

g

a

b

f

0 a

b

f

a

b

Figure 5.16: After executing line 14: expr->setArgument(exprArray[0], 1)

Chapter 6

Version 3: The Compiler with
Sequence Variables

The very last version that has been created, in the following called “Compiler/SV”,
is very similar to the one before, “Compiler”, with one little difference: It is
also capable of dealing with sequence variables in the rewrite-rules. This little
difference, however, has huge impact on the algorithms and therefore also and the
implementation of the programs (both compiler and compiled programs), as will
be seen in the subsequent sections.

The outline of this chapter is the following:
First, the main algorithms and their implementation are presented, as well as the
most important classes and their hierarchy in the implementation. Just like in
Version 2, “Compiler”, also in this version it is important to distinguish between
the implementation of the compiled programs, which is dealt with first, and that
of the compiler. There, not only the algorithms for rewriting, but also for matching
are presented in detail, since they are far more complicated than those in the other
two versions.
Afterwards, a short description of how the compiler and the compiled programs
are used is provided.
The chapter ends with an example that illustrates what exactly the output of the
compiler is and how a given expression is rewritten by it (after being transformed
into an executable program, of course).

82

6 Version 3: The Compiler with Sequence Variables 83

6.1 Implementation of the Compiled Programs

In principle, the implementation of the compiled programs in this version is quite
the same as in “Compiler”. There is one abstract base class Rule and, for every
rule, a derived class that provides definitions for the two virtual functions match
and rewrite. The only difference here is that function rewrite is now of type void
rather than of type Expression*; The argument (expr) is passed as a reference and
points to the root of the tree representing the new expression after the execution
of the function.
However, class Rule also contains three additional members, listed below together
with some short information about their meaning.

int *seqVarLen This is a non-static array of underlying type int whose length
varies from rule to rule and is exactly the number of sequence variables occuring
in the rule. It is filled in function match and, in case that an expression is matched
by the rule, the value of the i-th element of seqVarLen describes how long the
sequence of instances of the i-th sequence variable has to be in order to match the
expression. This information has to be stored, because it probably will be needed
when eventually rewriting the expression.

int argNumber This static member is only needed as an auxiliary variable in
some of the definitions of the match-functions.

Function setInt This static member is a very simple function that takes two
arguments of type int, both of them as references, assigns the value of the second
one to the first one and in the end always returns the boolean value true. It is only
needed to make the definitions of the various match-functions a little bit shorter.

The most important difference between “Compiler” and “Compiler/SV” comes
from the fact that some rule-variables may be instantiated with sequences of
subexpressions. Therefore, additional flexibility is needed in terms of the arity
of functions. It is better not to implement functions with a fixed arity, where
the arguments are stored in an array, but rather with a flexible arity where the
arguments are stored in a linked list, and where arguments can be added and re-
moved at any time with very little effort (compared to the effort of allocating new
memory when resizing an array). Indeed, class Function which implements func-
tions does not have a list of expressions as its member, but rather only contains
pointers to its first and last argument (might be the same; might be even NULL,

6 Version 3: The Compiler with Sequence Variables 84

if the function has no arguments), called first and last. In addition to that,
every object (functions and constants) contains a pointer, again of underlying type
Expression, that points to the object’s right neighbor in the argument list, or to
NULL if there is no such right neighbor. This pointer is called next and, since
every object has one, is a member of the base class Expression.

The fact that every object points to its right neighbor has one immediate con-
sequence: Since one and the same constant might appear several times in an
expression and therefore surely also has different right neighbors, it necessarily
needs to be represented by different instances of class Constant, where the next-
member of every instance points to the respective right neighbor. So, unlike in the
two previous versions, there is no list of constants any more; All occurences of a
constant are represented by different objects, just like functions.

The example below (Figure 6.1) illustrates the new concept of storing argu-
ments by showing the implementation of the tree representing the expression
f[a,g[b],g[c]]:

f

a g g

b c

Figure 6.1: Internal representation of expression f[a,g[b],g[c]]: Black arrows
indicate values of first pointers, red arrows indicate values of last pointers, blue
arrows indicate values of next pointers; Arrows having a corner indicate NULL-
pointers

Apart from the things mentioned above, everything remains the same compared
to “Compiler”.

6.2 Algorithms and Implementation of the Com-
piler

The first thing that has to be said when talking about the implementation of the
compiler is that just as in all other programs, except the compiled programs of this
version, again function arguments are stored in an array rather than as a linked
list. This is due to the fact that the compiler only needs to represent LHSs and

6 Version 3: The Compiler with Sequence Variables 85

RHSs of rules, and although there might be sequence variables involved, they are
still only individual symbols, which means that the arity of functions can be fixed.
In fact, sequence variables affect the implementation of the compiler in only three
ways:

1. Since the arity of functions is flexible and multiple occurences of the same
constant are represented by different objects (in the compiled programs),
not arity preserving mappings (as with “Compiler”), but type preserving
mappings have to be considered: They do not “ignore” constants, but they
“ignore” a function’s arity. This in particular means that a function with
arity, say, 3, may be reused as a function with arity, say, 2.

2. Multiple occurences of one and the same constant are represented by different
objects, just as in the compiled programs, because when dealing with type
preserving mappings, constants have to be considered as well, i. e. it does
matter where exactly an occurence of a constant is mapped to (constants are
not “ignored”, i. e. not mapped to ∅).

3. The matching-algorithm becomes much more complicated, since there might
be not only one variable substitution that makes the LHS of the rule and
the expression equal, but many. Thus, generating the code for the match-
function is in general far more difficult.

Concerning the implementation of class rule, please consult Section 5.2.1, since
it is almost completely the same in this version: There are functions toHeader
and toSource that return the C++ source code of the class declaration and -
definition, respectively, of the respective rule. Function makeCode is again the
main function that really generates the command sequences for the rewrite- and,
unlike in Version 2, also for the match-function. Functions findBestMapping and
findBestPaths have the same meaning as before, apart from the fact that the
best mapping obviously needs to be type preserving in this case.

6.2.1 Commands

As shortly mentioned above, also the definitions of the match-functions are repre-
sented as command sequences. Therefore, before explaining how those definitions
(and of course the definitions of the rewrite-functions, too) are generated and
how they look like, it has to be made clear what commands there are. Some of
them are the same as or very similar to commands of Version 2, see Section 5.2.3
for more information. The implementation was done in completely the same way
by providing an abstract base class Command, where all other classes inherit from.

6 Version 3: The Compiler with Sequence Variables 86

However, there is one important thing to notice. Unlike in Version 2, function
arguments are not stored in an array but somehow as a linked list. So, accessing
them cannot be done in constant, but only in linear time. This means that one
has to pay attention to the order in which arguments are eventually accessed. For
example, if there is a function with two arguments a1 and a2 at positions i and j in
the argument list, respectively, that still have to be dealt with (in whatever way),
and it does not matter which of them has to be processed first, then always the
first one in the argument list should be processed first, say this is a1 (⇒ i < j).
The reason is that accessing a1 requires O(i) steps for traversing the argument list
from the beginning, but then for accessing a2 one does not have to start at the
beginning of the list but at a1, which then only takes O(j − i) steps compared to
O(j) steps.
There are commands whose only purpose is to move a pointer p through argu-
ment lists, namely CMoveRight and CMoveAdvanced. They do so by successively
setting p = p->next (recall member next of class Expression). Also, whenever
there is talk of something like “sequence of objects starting at obj”, where obj is
of type Expression, this simply means all the objects that can be accessed via
obj->next->...->next.

Please note that there is one important additional member of the base class, com-
pared to the previous version: Every command now has a type, returned by the
function commandType, which is one of the following:

• Normal command: This command cannot be used inside a condition, but
only in a sequence of commands

• Normal/conditional command: This command can be used both inside a
condition and as a normal command in a sequence of commands

• Conditional command: This command can be used only inside a condition
(and hence returns a boolean value)

• Loop command: This command represents a for-loop

This short list already indcates that in Version 3 there are also conditions and
loops. All derived classes are listed below, together with a short explanation. The
naming and typesetting conventions are the same as in Section 5.2.3, with three
additional shortcuts:

Sometimes some function arguments have to be accessed. This is as usual done by
providing the indices of the respective arguments, but what if those indices are not
known at compile-time? It could be the case that there are some sequence variables
before the requested arguments, and the length of their sequences of instances is

6 Version 3: The Compiler with Sequence Variables 87

obviously not known. The solution is somehow simple: Although those lengths are
not known at compile-time, they are known at runtime (array seqVarLen). Hence,
let in the following n be the total number of sequence variables in the rule (might
of course be 0). If a is an int-array of length n + 1 and a member of one of the
commands, and in the given C++ source code 〈a〉 appears, then this is a shortcut
for

a[0]*seqVarLen[0]+a[1]*seqVarLen[1]+...+a[n− 1]*seqVarLen[n− 1]+a[n]

if a[n] is non-negative, and

-(a[0]*seqVarLen[0]+a[1]*seqVarLen[1]+...+a[n− 1]*seqVarLen[n− 1]-a[n])

otherwise. Note that arguments can be accessed with negative indices as well,
which simply means that accessing them is done by starting from the last argument
(index -1 refers to the last argument in the argument list).

The second additional shortcut is closely related to the first one. Sometimes in-
stances of sequence variables have to be copied or removed, inserted, etc., to an
argument list. Therefore, the length of those instances again needs to be known.
So, if m is a member of type int of one of the command-classes, and in the given
C++ code somewhere [m] appears, then this is a shortcut for

m

if m is positive, and

seqVarLen[−m]

otherwise.

Finally, the third additional shortcut is the following: Recall the static argNumber-
member of class Rule in the implementation of the compiled programs (Sec-
tion 6.1). Whenever there is an int-member m of one of the command-classes
and in the given C++ source code somewhere {m} appears, then this is a shortcut
for

m

if m is non-negative, and

argNumber

otherwise.

6 Version 3: The Compiler with Sequence Variables 88

CAssignment This class consists of two indices lhs and rhs of type
ExprArrayIndex (one for the LHS of the assignment, one for the RHS) and one
non-negative argument-index arg of type int. The C++ code corresponding to
an instance of this class is the following:

lhs = rhs->getArgument(arg)

The effect of executing this command is that afterwards lhs points to the expression
on the RHS of the assignment. However, if it is used inside a condition, it does
the same but afterwards always returns true.

CSetToZero This class can be viewed as a simplification of CAssignment. It
only consists of one non-negative index called index, and the C++ code is the
following:

index = 0

Obviously, the effect of executing this command is that afterwards index is a
NULL-pointer.

CSetName Completely the same as in the previous version, see Section 5.2.3.

CDelete This class only consists of one index called index of type
ExprArrayIndex, and the corresponding C++ code is the following:

delete index

CRemove_Delete This class consists of one index called parent of type
ExprArrayIndex, two numbers called posIndex and length of type int, and a
flag called remove of type bool that determines whether the objects that are
considered have to be deleted or just removed from an argument list. The C++
code reads as

parent->deleteArguments(posIndex, [length])

6 Version 3: The Compiler with Sequence Variables 89

if remove is false, and

parent->removeArguments(posIndex, [length])

otherwise. The effect of executing this command is that, starting after posIndex,
[length] arguments are deleted/removed from the argument list of parent.

CNewFunction_Constant This class consists of one index called lhs of type
ExprArrayIndex, a non-negative name-index nameIndex of type int, and a flag
isConstant of type bool. The corresponding C++ code reads as

lhs = new Function(Expression::RuleSymbols + nameIndex)

or

lhs = new Constant(Expression::RuleSymbols + nameIndex)

respectively, and its execution simply creates a new function/constant with the
name defined by nameIndex. Since the arity of functions is flexible, it does not
have to be given when a function is created (it is zero at the beginning).

CCopy This class consists of two indices lhsIndex and rhsIndex of type
ExprArrayIndex and one member of type int called len. The C++ code
representation is the following:

Expression::Copy(rhsIndex, [len], lhsIndex)

The effect of executing this command is that afterwards lhsIndex is the first object
of the copy of [len] objects, starting from rhsIndex, i. e. rhsIndex has a next-
object, which itself also has a next-object, and so on, and the first [len] of them
are copied such that the copies again point to each other, and lhsIndex is the first
of them.

6 Version 3: The Compiler with Sequence Variables 90

CInsert This class consists of two indices of type ExprArrayIndex, called
parent and arg, and two members of type int called pos and len. The
corresponding C++ code is

parent->insertArguments(pos, arg, [len])

The effect of this command is that the first [len] objects starting with arg are
inserted to the argument list of function parent right after argument pos, if this
pointer is non-NULL, or at the very front otherwise.

CSwap_Move This class consists of one ExprArrayIndex called parent, three
members of type int called pos (non-negative), len1 and len2, one int-array
of length n + 1 called dist and one flag swap of type bool. The corresponding
C++ code is

parent->swapArguments(exprArray[pos], [len1], 〈dist〉, [len2])

if swap is true, and

parent->moveArguments(exprArray[pos], 〈dist〉, [len2])

otherwise. In the first case, the [len1] arguments after (exclusive) the one
exprArray[pos] points to are swapped with the [len2] arguments after (inclusive)
the one that comes 〈dist〉+ [len1] positions after exprArray[pos]. In the second
case, the [len2] arguments after (inclusive) the one that comes 〈dist〉 positions
after exprArray[pos] are moved to the front such that afterwards they come
immediately after exprArray[pos]. If exprArray[pos] is a NULL-pointer then
those arguments are moved to the very front. In both cases, exprArray[pos] is
moved [len2] positions to the right in the end.

CIsFunctionOrConstant This class consists of one ExprArrayIndex called obj,
one non-negative int-member name and one flag isF of type bool. The corre-
sponding C++ code is

obj->isFunction(Expression::RuleSymbols + name)

6 Version 3: The Compiler with Sequence Variables 91

if isF is true, and

obj->isConstant(Expression::RuleSymbols + name)

otherwise. This command is a conditional command (returns a boolean value); It
checks whether obj is a function/constant whose name is the name-th one in the
list of symbols.

CHasArity This class consists of one ExprArrayIndex called obj, one int-
member arity and one flag exact of type bool. The corresponding C++ code
is

obj->argumentCount() == {arity}

if exact is true, and

obj->argumentCount() >= {arity}

otherwise. This command is a conditional command; It checks whether obj is a
function whose arity is either equal to {arity} or at least {arity}, respectively.

CDividesArity This class consists of one ExprArrayIndex called obj and one
positive int-member modulus. The corresponding C++ code is

!((obj->argumentCount() - argNumber) % modulus)

This command is again a conditional command; It checks whether the division of
the arity of function obj by modulus has remainder argNumber.

CAssignSeqVarLen This command consists of one ExprArrayIndex called obj
and two int-members called index and divisor. The corresponding C++ code
is

seqVarLen[index] = (obj->argumentCount() - argNumber) / divisor

6 Version 3: The Compiler with Sequence Variables 92

if divisor is greater than 0, and

seqVarLen[index] = 0

otherwise. The effect of executing this command is that afterwards the value of
the index-th element of the seqVarLen-array is set to the value on the RHS of the
assignment.

CAssignArgNumber This class only consists of an int-array of length n+1, called
argNumber. Its C++ code representation is the following:

setInt(argNumber, 〈argNumber〉)

if it occurs inside a condition, and

argNumber = 〈argNumber〉

otherwise. Obviously, the effect of executing it is that afterwards the value of the
static argNumber-member of class Rule is set to the number on the RHS. Recall
function setInt of class Rule (Section 6.1): This function always returns true.

CGetArgument This class somehow extends command CAssignment. It consists
of one ExprArrayIndex called obj, one non-negative int-member index and a list
of int-arrays, each of length n+1, called argNumber, with m items. Its C++ code
representation is the following:

Expression::assignExpression(exprArray[index],
obj->getArgument(〈argNumber[0]〉)->...->getArgument(〈argNumber[m]〉))

if it occurs inside a condition, and

exprArray[index] =
obj->getArgument(〈argNumber[0]〉)->...->getArgument(〈argNumber[m]〉)

otherwise. The upper version does completely the same as the lower one, but
returns the boolean constant true.

6 Version 3: The Compiler with Sequence Variables 93

CMoveRight This class consists of one ExprArrayIndex called parent and two
members of type int called index and stepSize, respectively. Its C++ code
representation is the following:

parent->move(exprArray[index], [stepSize])

if the value of member i of parent is greater than or equal to -1, or

Expression::moveRight(exprArray[index], [stepSize])

otherwise. The effect of executing the upper version is that afterwards
exprArray[index] points to the argument that comes [stepSize] arguments after
the one it previously pointed to in parent’s argument list; If exprArray[index]
is a NULL-pointer, it is set to the first argument of parent and [stepSize] is
decreased by 1 before setting it. The effect of executing the latter version is
almost the same, except that exprArray[index] must not be a NULL-pointer,
and it always returns true.

CMoveAdvanced This class somehow extends the previous command. It again
consists of one ExprArrayIndex called parent and one non-negative int-member
index, but in contrast to CMoveRight also one int-array of length n + 1 called
argNumber. Its C++ code representation is the following:

Expression::moveRight(exprArray[index], 〈argNumber〉)

The effect of executing it is basically the same as described above, but now it
is possible to express the step-size in terms of lengths of instances of arbitrary
sequence variables.

CGetFirst This very simple class only consists of one ExprArrayIndex called
index and one non-negative int-member lhs. Its C++ code representation is

exprArray[lhs] = index->getFirst()

and executing it only makes exprArray[lhs] point to the first argument of the
function pointed to by index.

6 Version 3: The Compiler with Sequence Variables 94

CIsEqual This class consists of two members of type ExprArrayIndex, called
lhs and rhs, respectively, and one member of type int called index. Its C++
code representation is the following:

Expression::equal(lhs, rhs, seqVarLen[index])

if index is non-negative, or

lhs->equals(rhs)

otherwise. This command is a conditional command and it checks whether the
subtree-sequences starting at lhs and rhs, respectively, having the same length
as the instance of the index-th sequence variable, are equal (not only the roots
of those subtrees are checked, but the entire subtrees). In the latter version, the
length of the sequences that are checked is just 1.

CForLoop This class represents the only loop-command. It consists of one
ExprArrayIndex called parent, one int-member seqVarIndex, and one int-array
of length n+ 1 called argNumber. The corresponding C++ code is

for (seqVarLen[seqV arIndex] = 0; 〈argNumber〉 <= parent->argumentCount();
++seqVarLen[seqV arIndex])

The effect of executing this command is that it iterates through all values of
seqVarLen[seqV arIndex], starting at 0, until the loop condition fails to evaluate
to true, which eventually will be the case if argNumber[seqV arIndex] is non-zero.

Since there might be loops and conditions in the command sequence, the question
is: When do the scopes of those loops/conditions end? The answer is quite simple:
They last until the very end of the command sequence, i. e. all other commands
coming after them are inside the loops/conditions. Hence, there are no additional
commands needed that “close” conditions/loops, so to say.

6.2.2 Constructing Function match

Matching is a rather complicated task when sequence variables are involved. This
is due to the fact that the lengths of the sequences of instances of each sequence

6 Version 3: The Compiler with Sequence Variables 95

variable are not known in advance, neither at compile-time nor at run-time at the
beginning of the matching process. A second problem is that, in general, if an
expression e matches another expression h, there are lots of possible substitutions
for the sequence variables in e that are suitable. This immeiately leads to the
question which of them is eventually chosen, and the answer is not that simple. The
algorithm that was implemented in the frame of this thesis somehow “sorts” the
sequence variables and tries to find a substitution where the length of the sequence
of instances of the first sequence variable w. r. t. that ordering is minimal, similar
for the other ones. The algorithm itself, and how it is constructed, is described in
detail below, in Section 6.2.2.5.

Let from now on in this section always be e the expression describing the pattern,
let h denote the expression that is tried to be matched, and let T and U denote
their corresponding trees. Also let, for any sequence variable a_ in e, |a_| denote
the length of its instantiation when matching expression h. If more than one such
instantiations are possible, |a_| denotes the length of one of them. Please also
note that only the length of the instantiation, i. e. the number of expressions that
instantiate a_, and not the instantiation itself is of interest.

6.2.2.1 A Brute-Force Approach

The problem of matching with sequence variables mainly arises from the fact that
the lengths of suitable sequences of instances of the variables (i. e. sequences of
instances that make the expressions equal) are not known. Therefore one could
just try out, for each sequence variable, all lengths (at least to an upper bound)
and then check whether such a setting of lengths is fine or not. Indeed, this brute-
force approach would really work, but is very inefficient. Namely, in many cases
there are sequence variables whose instance-length is uniquely determined, and
thus no loop or recursion is needed. For example, take the very simple expression
e = f[a_], where a_ stands for a sequence variable. No matter how the expression
that is tried to be matched looks like, if it is matched by e its outermost function
must have name f, and the only suitable substitution replaces a_ by the enire
argument list of that function. So, |a_| is uniquely determined. Trying all lengths
from 0 to some upper bound would be really inefficient.

6.2.2.2 A More Efficient Approach

The considerations that were made in the last section immediately lead to a more
efficient approach:

6 Version 3: The Compiler with Sequence Variables 96

1. Find all sequence variables whose instance-lengths are uniquely determined.

2. In this process, also check all the other objects in the tree that are known
until now, like names of functions/constants, and check whether different
occurences of the same variable (individual or sequence) are instantiated
with equal objects.

3. Apply the brute-force approach to all other sequence variables, but only one
after the other: Fixing a possible length for one variable may cause the length
of another variable to be determined uniquely; Therefore, go back to 1.

The following example illustrates the new approach. Again, every symbol with a
“_” at the end of its name stands for a sequence variable. The expression e that
serves as the pattern is defined as

f[a_, b_, g[a_, a_]]

Although there are two different sequence variables involved, for every expression
h that is matched by e there is only one suitable variable substitution, which
means that the lengths of the sequences of instances of both sequence variables
are uniquely determined. The reason is the following:

1. First of all, the name of the outermost function of h must be f.

2. No matter how many arguments the outermost function of h has, as long as
it has at least one, the last one must be a function with name g. This can
also be checked immediately.

3. The number of arguments of that function (g) can be arbitrary, as long as it
is even. If it is even, |a_| is given by the half of the number of function g’s
arguments.

4. Now, it can be checked immediately whether the two occurences of a_ in
function g are instantiated by equal sequences of objects.

5. Since |a_| is known, it can be checked whether the outermost function (f)
has enough arguments, namely at least |a_|+1. If so, also |b_| is determined
uniquely.

In the above steps no single iteration over possible lengths was needed to check
whether e matches h.

This is exactly the strategy that is pursued by the matching-algorithm that was
implemented for Version 3, see Section 6.2.2.5.

6 Version 3: The Compiler with Sequence Variables 97

6.2.2.3 The Determinate Part of a Tree

Assume that e indeed matches h and that in the process of matching e against
h the lengths of the sequences of objects that instantiate some of the sequence
variables are already known. Then some part (compare Definition 23) of T is said
to be determinate; It is formally defined in the following way:

Definition 26. Let T , e and h be as above. Then the determinate part of T is
the set of vertices of T consisting of

1. The root of T (this is also the root of the determinate part), and

2. Whenever there is a node in the determinate part, also of the first of its
children (from left to right) until the first child that is a sequence variable
with still indeterminate length, and of its children (from left to right) starting
after the last child that is a sequence variable with still indeterminate length.

The following examples illustrate the concept of determinate parts of trees. There-
fore, let a_ be a sequence variable where |a_| is already known, and b_ and c_
sequence variables such that |b_| and |c_| are not known at the moment. All
other leaves are either individual variables or constants - That does not make any
difference. Vertices belonging to the determinate part are printed in red letters:

• f

a_ b_ 0 c_ 1

• f

f

a_

0 b_ 0 c_

• f

b_ a_ 0 b_

The reason for introducing the concept of the determinate part of a tree is the
following: The places of all vertices in U (i. e. the tree corresponding to h) that
correspond to vertices in the determinate part of T , and only of those vertices,
are known. This means that they can be accessed without needing to know the
lengths of the instances of the other, still indeterminate sequence variables. Take,

6 Version 3: The Compiler with Sequence Variables 98

for example, the 1 in the first of the above examples. Although there are sequence
variables b_ and c_, whose instances still have indeterminate lengths, in the tree,
and even with the same parent as 1, the place of the vertex in U corresponding to
1 is uniquely determined: It is the last child of the root node. Hence, 1 belongs to
the determinate part. On the other hand, 0 is not an element of the determinate
part. The only information one can derive is that some child of the root of U must
be 0, but it is not yet known where exactly this vertex has to be, because in T
both before it and after it there are sequence variables whose instances still have
indeterminate lengths.

6.2.2.4 Class SplitNode

The implementation of the concept of determinate parts is done with the new
class SplitNode. This class inherits from class Expression and basically models
nodes in trees, just like class Function: It has a name and children/arguments.
However, unlike ordinary functions, its arguments are not just stored in one single
array, but in three separate lists, called left, center and right, respectively.
Please note that class SplitNode is part of the implementation of the compiler
and hence left, center and right are really lists and not just pointers to single
objects which themselves then point to their right neighbors, and so on, as in
the implementation of the compiled programs (see Section 6.1). The meaning of
those three lists is quite obvious: left contains all the arguments that belong to
the determinate part of the tree and come before the first sequence variable with
unknown length, right contains all the arguments that belong to the determinate
part of the tree and come after the last sequence variable with unknown length, and
center contains the rest. Please note two things: First, during the construction of
the matching-function the content of the three lists changes: A sequence variable
whose length is unknown at the beginning may (and, in fact, certainly will) at
some point become known (That’s why left, center, right are implemented as
dynamic lists rather than arrays). Second, note that it is possible that some of the
lists are empty; In particular, this is the case when there is no sequence variable
with indeterminate length in the argument list of the SplitNode-object. Then,
everything is contained in left, and center and right are empty.

Before the matching-algorithm is constructed, a copy of the LHS of the rule is
created where Function-objects are replaced by SplitNode-objects where all se-
quence variables are regarded as having indeterminate length. All this happens in
function makeCode of class Rule.

6 Version 3: The Compiler with Sequence Variables 99

6.2.2.5 Constructing the Algorithm

The algorithm for matching, just as the definition of the rewrite-function, is con-
structed in terms of a sequence of commands in function makeCode of class Rule. It
follows the strategy presented in Section 6.2.2.2, but before it can be described in
detail, there is one very important aspect to be noticed: Obviously, the algorithm
is constructed at compile-time. At this time, no concrete expression h is known,
so how can one say “The length of the instance of sequence variable a_ is deter-
minate now”? Surely, the lengths of the instances of sequence variables depend
on the expression that is tried to be matched. The answer is the following: Al-
though the lengths are not known, it is possible to find out at which point they will
be known later when eventually really executing the matching-algorithm on con-
crete expressions, and therefore the method that creates the matching-algorithm
somehow “pretends” to know them. Just recall the example in Section 6.2.2.2:
Although only the pattern of the rule and no concreete expression is given, from
the third element in the enumeration on it is clear that |a_| will be known when
the algorithm is executed on a concrete expression.

The following is the outline of the method that constructs the definition of function
match in terms of a command sequence. Its input is the tree T corresponding to
the LHS of the rule, where instead of Function-nodes there are SplitNode-nodes.
However, the commands that are created don’t work on T , but on the tree U
corresponding to the expression that is tried to matched:

1. Go through the determinate part of T until you reach a nodeN where center
contains occurences of only one sequence variable with indeterminate length
(let a_ denote that sequence variable). If no such node exists, go to 6.

2. Let N ′ denote the node in U corresponding to N . Create commands for
checking whether all the predecessor nodes of N ′ in U have the right name
and sufficiently many arguments (the exact number might not be known
until now).

3. Create a command that assigns |a_| to the element of array seqVarLen
corresponding to a_. This value depends on the arity of N ′, the number of
occurences of a_ in the arguments of N ′, and on the number of the other
arguments of N ′ (their lengths are already determined), and it is

|a_| =
arity(N ′)−∑i∈arguments(N ′)\{a_} length(i) ·#occurences(i)

#occurences(a_)
Of course, first of all a command needs to be created that checks whether
this value is a Natural number. If so, from now on |a_| can be assumed to
be known.

6 Version 3: The Compiler with Sequence Variables 100

4. Update T : There might be other nodes in its determinate part with a_ as
the first/last element in center, which is not allowed any more since |a_| is
determinate now and the first/last element of centermust be indeterminate.

5. Go back to 1.

6. Create commands that check all the nodes in U corresponding to nodes
in the determinate part of T for having the right names and arity; Create
commands that check all the constants in U corresponding to constants in
the determinate part of T for having the right names; Create commands
that check whether all the different occurences of one and the same variable
(individual or sequence) in the determinate part of T are instantiated with
equal objects in U , for all variables.

7. If there is no more sequence variable with unknown length, create a command
that simply returns true, and we are done. Otherwise, continue with the
next step.

8. Search for a node N in the determinate part of T where the number of differ-
ent sequence variables with unknown length occuring in center is minimal
(it is at least 2). Let a_ denote the first element of center and N ′ again
denote the corresponding node in U . Create a for-loop-command that iter-
ates through all the possible values for |a_|, from 0 to the arity of N ′ minus
the sum of the lengths of all the arguments of N ′ with known length.

9. Since from now on |a_| can be assumed to be known (in the definition of
function match we are now inside the body of the loop that iterates through
the possibilities for |a_|), go back to 4.

The last thing that happens when the command sequence is created is a little
optimization, just as with the command sequence of the rewrite-function. The
optimization consists of three steps:

1. Remove redundant loops: There might be for-loop-commands where after-
wards no single condition appears, but only assignments and the return
true command created in step 7. Thus, the first iteration will always yield
success, and therefore no loop is needed; Instead, the length of the corre-
sponding sequence variable can immediately be set to 0.

2. Remove redundant assignments: A redundant assignment is an assignment
to a variable (more precisely: element of exprArray) that is never used later
on.

3. Fill index holes: Index-holes of exprArray are filled. Please consult Sec-
tion 5.2.4.6 for more information.

6 Version 3: The Compiler with Sequence Variables 101

6.2.2.6 An Example

Let us consider now an example in order to present the ideas proposed in the
previos sections in a more intuitive way. For that reason, assume that in the
following the pattern (i. e. LHS of the rule) is given by the expression

f[a_, b_, c_, g[b_, b_]]

where all the non-function symbols a_, b_ and c_ are sequence variables. The
following C++ source code was generated fully automatically by the compiler
of Version 3 by applying the algorithm showed in the previous section, and it
represents the definition of function match:

1 bool Rule0 :: match (Expression *expr){
2 argNumber = 1;
3
4 if (expr -> isFunction (Expression :: RuleSymbols + 0) &&
5 expr -> argumentCount () >= argNumber &&
6 (Expression :: assignExpression (exprArray [1] , expr -> getArgument (-(1)))) &&
7 (setInt (argNumber , 0)) &&
8 exprArray [1]-> isFunction (Expression :: RuleSymbols + 1) &&
9 exprArray [1]-> argumentCount () >= argNumber &&

10 !((exprArray [1]-> argumentCount () - argNumber) % 2)){
11
12 seqVarLen [1] = (exprArray [1]-> argumentCount () - argNumber) / 2;
13 exprArray [0] = exprArray [1]-> getArgument (0);
14 exprArray [1] = expr -> getFirst ();
15 Expression :: moveRight (exprArray [1] , expr -> argumentCount () - (1));
16 exprArray [2] = exprArray [1]-> getFirst ();
17 Expression :: moveRight (exprArray [2] , seqVarLen [1]);
18 exprArray [3] = exprArray [0];
19
20 if (Expression :: equal (exprArray [2] , exprArray [3] , seqVarLen [1])){
21
22 for (seqVarLen [0] = 0;
23 seqVarLen [0] + seqVarLen [1] + 1 <= expr -> argumentCount ();
24 ++ seqVarLen [0]){
25
26 argNumber = seqVarLen [0] + seqVarLen [1] + 1;
27 seqVarLen [2] = expr -> argumentCount () - argNumber ;
28 exprArray [1] = expr -> getFirst ();
29 Expression :: moveRight (exprArray [1] , seqVarLen [0]);
30 exprArray [2] = exprArray [0];
31
32 if (Expression :: equal (exprArray [1] , exprArray [2] , seqVarLen [1]))
33 return true ;
34 }
35 }
36 }
37 return false ;
38 }

Please note that the content of the Expression::RuleSymbols-array is [f, g]
and that seqVarLen is an int-array of length 3 of class Rule0. argNumber and

6 Version 3: The Compiler with Sequence Variables 102

exprArray both are static members of the base class Rule, and therefore also of
class Rule0 which inherits from it, where the first one is of type int and the latter
one is an int-array of length 4.

Line 2 of the above code simply sets argNumber to 1. The next thing is a big
if-block, starting at line 4. The condition of the if-block is a big conjunction,
ranging from line 4 to line 10. Please note that in C++, as soon as the first
element of a conjunction evaluates to false, the other elements of the conjunction
are ignored and false is returned immediately. Line 4 checks whether expr is not
a single constant but a function whose name is f. In line 5 it is checked whether
this function has at least argNumber arguments, where the value of argNumber is 1.
This is due to the fact that no matter what the various variables will be instantiated
with, there must be one last argument (namely g). The next line, line 6, makes
the second element of exprArray point to exactly that last argument (please note
that function assignExpression always returns true). In line 7, argNumber is
set to 0 (this function always returns true, too). In lines 8 and 9 it is checked
whether the last argument of the outermost function is itself a function with name
g and at least argNumber (=0) arguments. The last thing that is checked in line
10 is whether the number of arguments of that functions is even.

In case of success, the overall “shape” of the input is right. Now come the instances
of the sequence variables. Line 12 sets the length of the instance of variable b_ to
half of the number of arguments of function g, since argNumber is still 0. Lines 13
to 18 do nothing else than making the third and fourth element, respectively, of
exprArray point to the two first subexpressions in the sequences that instantiate
the two occurences of b_ in the argument list of function g. The way this happens
is indeed a bit cumbersome, taking into account that the same thing could be
achieved with fewer commands, and thus could be subject to improvement in
future versions.

The next part of the program is again an if-block, this time consisting of only one
condition (and no conjunction): Line 20 simply checks whether the two sequences
that instantiate the two occurences of b_ in the argument list of g are equal.

Now comes in lines 22 to 24 a for-loop which iterates over the possible lengths of
the instance of the first sequence variable a_, since this cannot be determined di-
rectly (at least when following the algorithm that was described in Section 6.2.2.5).
The least possible length is of course 0, the upper bound is given by the fact that
|a_|+ |b_|+ 1 must be less than or equal to the arity of the outermost function.

From now on, in the body of the loop, |a_| is fixed. In line 26 the value of
argNumber is set to the number of arguments of the outermost function that are
known until now; By the loop condition, this number is guaranted not to be

6 Version 3: The Compiler with Sequence Variables 103

greater than the arity of that function. Since |a_| was fixed, also |c_| can be
fixed now, and this happens in line 27. The next three lines, lines 28 to 30,
again do nothing else than making the second element of exprArray point to the
first subexpression in the sequence that instantiates the occurence of b_ in the
argument list of f (depends on |a_|), and the third element of exprArray point to
the first subexpression in the sequence that instantiates the first occurence of b_
in the argument list of g.

The last thing happens in lines 32 and 33: If the two sequences are equal, then
the input expression is matched and true is returned. Otherwise, one more loop
iteration is carried out, until no more is possible. In this case, false is returned
in line 37.

6.2.3 Constructing Function rewrite

The construction of the definition of function rewrite is done entirely in function
makeCode of class Rule. Indeed, the same approach is pursued as in Version 2:
Consider mappings from the LHS of the rule to its RHS (this time they have
to be type preserving), choose the one where the least number of operations is
required to transform the LHS into the RHS by using the commands listed in
Section 6.2.1, and eventually generate those commands. However, there is one
thing that is different than before: Only mappings of functions are considered at
the beginning! This is due to the fact that, in general, there are far more type
preserving mappings than arity preserving mappings, which means that trying all
of them could take too much time. Therefore, only the different mappings w. r. t.
functions are generated and the other objects (i. e. variables and constants) are
ignored at the beginning. Then, for every such mapping, the argument lists of
all the functions of the LHS that are not mapped to ∅ but to other functions are
compared with the argument lists of their images. This is done in the following
way: Assume there are five operations on argument lists:

• insert: This operation modifies the given argument list by inserting a new
argument at an arbitrary position.

• remove: This operation modifies the given argument list by removing an
arbitrary argument.

• replace: This operation modifies the given argument list by replacing an
arbitrary argument by a new argument.

• swap: This operation modifies the given argument list by swapping two
arguments in it.

6 Version 3: The Compiler with Sequence Variables 104

• move: This operation modifies the given argument list by moving an argu-
ment leftwards for an arbitrary amount.

Then, comparing the argument lists of two functions f and g (not necessarily with
the same arity) consists of computing the least number of operations needed for
transforming f ’s argument list into the one of g.

Before showing the algorithm that takes care of this comparison in detail, it is
necessary to define a new relation on tree-vertices, namely weak equality.

Definition 27. Let v be a vertex of tree T , u any vertex, µ a type preserving
mapping from T to somewhere else (indeed, only the part of µ that maps the
functions is important). Then v is weakly equal to u w. r. t. µ, denoted as v 'µ v,
iff

• Both v and u are constants, or

• v and u are the same variable, or

• Both v and u are functions and µ(v) = u

The algorithm is implemented in function compareSignatures of class
Expression and works in the following way: Assume you are given the two
argument lists A and B and a type preserving mapping µ (again, only the
restriction of µ to functions matters):

• If neither A nor B is empty, A = [a, l_], B = [b, r_] (l_ and r_ stand for
sequences of arguments), and a 'µ b, then just continue with [l_] and [r_]

• Otherwise, if again neither A nor B is empty and A = [a, l_] and B = [b, r_],
let al := {x ∈ l_ : a 'µ x}, ar := {x ∈ r_ : a 'µ x}, bl := {x ∈ l_ : x 'µ b}
and br := {x ∈ r_ : x 'µ b}:

– If |br| ≥ |bl|, then let x be an object with x 'µ b:
∗ If |ar| > |al|, then inserting x in front of a will do the job; Continue

with [a, l_] and [r_]
∗ Otherwise, replacing a by x will do the job; Continue with [l_] and

[r_]
– Otherwise

6 Version 3: The Compiler with Sequence Variables 105

∗ If |ar| > |al|, then either swapping a with one of the elements in
bl or moving one of those elements in front of a will do the job;
Try all of those operations Φ and call this algorithm recursively
on Φ([a, l_]) and [r_]. In the end, choose the operation Φ where
the number of additional operations for transforming Φ([a, l_]) into
[r_] is minimal.
∗ Otherwise, removing a will be a suitable operation; Continue with

[l_] and [b, r_]

• If A is empty, then inserting vertices that are weakly equal to the elements
of B will do the job

• If B is empty, then removing all the elements of A will do the job

Remark 28. If A = [a, l_], B = [b, r_], al = {x ∈ l_ : a 'µ x}, ar = {x ∈ r_ :
a 'µ x} (like above) and a is a function, then al = ∅ and |ar| ≤ 1. Similar for b,
br and bl.

After executing the above algorithm, the two argument lists are weakly equal, i. e.
they have the same length and the i-th arguments of both lists are weakly equal,
for all i.

However, since the same idea is pursued as in Version 2, function
compareSignatures does not really carry out the operations but only
checks how many of them are needed. Moreover, the considered mapping µ, which
is already defined for all the functions, is extended to some of the other objects
(variables, constants): For example, take the very first case from above. Neither
A nor B is empty and their first elements are weakly equal. The description of the
algorithm in this case simply says “Continue with the rest of A and B”, but this
can be viewed as “Map the first element of A to the first element of B”. Hence, µ
is extended (except the first element of A is a function, then µ has already been
defined on it before). But not all vertices of the LHS of the rule are mapped
to something. For example, consider the case in the above algorithm where the
object x appears. The description just says “Let x be an object with . . . ”, but
it is not said where this object comes from (only that it surely not comes from
A). So, it either comes from another argument list somewhere else in the tree,
or it has to be created. Coming from another argument list means that it is not
needed any longer there (it is removed).

As in the previous version, function findBestMapping of class Rule takes care
of finding the best mapping. It does so by first considering all mappings of
functions and then calling, for every such mapping µ, function countCopyingOps
of class Function, which has the same meaning as in Version 2, and which

6 Version 3: The Compiler with Sequence Variables 106

has compareSignatures as a helper function. The only thing that function
countCopyingOps does when called on two trees and a mapping µ between those
two trees (which is only defined on the functions) is extending the mapping
µ to a certain amount, counting the number of some (not all!) operations
required for transforming one tree into the other given the mapping µ, and
filling some part of the exprArrayIndex-array, which has absolutely the same
purpose as in Version 2: Storing additional information about the vertices of
the tree representing the LHS of the rule. The part of the array that is filled is
the one that corresponds to functions (nodes). The meaning of an element of
exprArrayIndex is the following (f is the corresponding function):

• -1: f doesn’t have to be stored in function rewrite

• -2: f needs to be stored, because it is reused and its parent changes in the
rewriting process

• -3: f needs to be stored, because although it is reused and its parent remains
the same, some successor of it needs to be accessed (e. g. some arguments
have to be swapped/moved/inserted)

• -4: f needs to be stored, because it is not reused and therefore surely all of
its successors have to be accessed

The last thing that is done in function findBestMapping is the same as in the
previous version: Finding, for every variable that has to be copied at some point,
an occurence in the LHS of the rule such that the total length of the paths leading
to those occurences is minimal. Since this works really in completely the same way
as in Version 2, let me refer to Section 5.2.4.3 for a detailed description. Again,
some part of exprArrayIndex is filled as well. In addition to the four possible
values of elements corresponding to functions, there are two more possible values
(let o be the corresponding object; not necessarily a function):

• -6: o is a variable which is reused and whose parent remains the same in the
rewriting process, but nonetheless needs to be stored (for copying)

• -7: o is a function that is reused and whose parent remains the same, and
the exprArrayIndex-value of some successor of it is -6

Summarizing, function findBestMapping does the following:

• Constructing some part of a type preserving mapping (defined on all func-
tions and some variables and constants) that gives rise to a transformation of

6 Version 3: The Compiler with Sequence Variables 107

the LHS of the rule into its RHS where the number of required operations is
minimal. Although the mapping is in general not defined on all vertices, it is
defined on sufficiently many vertices to be sure that the number of operations
is minimal. Note that also the inverse of that mapping is constructed.

• Filling some part of the exprArrayIndex-array. The meaning of the values
of the elements is described above.

In order to be able to eventually really construct the definition of function rewrite,
the mapping µ that is used for transformation needs to be defined on the entire
LHS, which is not the case until now. There might be, say, an occurence of the
variable x where µ is not yet defined on the LHS and also an occurence of the same
variable on the RHS that does not yet have an inverse w. r. t. µ. This, however,
means that µ is not even a type preserving mapping, according to Definition 14.
The solution to this problem is rather simple: Just map the LHS-occurence of x
to the RHS-occurence. But what if there are many such occurences? Then there
are also many possibilities of mapping . . . Does that mean that once again all of
them have to be considered and finally the best one is chosen? The answer is: No.
Although there are in general lots of possibilities to map the remaining variables
and constants on both sides of the rule to each other, they are all equally good
in terms of minimal number of operations. No matter which object is mapped to
which object, the eventual rewriting-algorithm surely has to traverse the tree twice:
First to access the corresponding vertex and store it somehwere in exprArray, and
second to move it to its new position. The emphasis is on new, since the parent of
the considered vertex surely changes. If its parent remained the same, i. e. in the
rule the image of the parent of the corresponding object was exactly the parent
of its image, then the compareSignatures-function would have already detected
that and thus automatically defined µ on it.

Now, since it doesn’t matter how the mapping of the remaining objects looks like
(as long it is type preserving), simply the “first” one is chosen. “First” means that
the first object on the LHS where µ is not defined on is mapped to the first suitable
object on the RHS that doesn’t have an inverse w. r. t. µ, and so on. There is only
one little detail that has to be taken into account: In principle, every constant
can be mapped to every constant, because constants can be renamed. However,
renaming, although only one pointer operation, still requires some effort. Hence,
in the extension-process of µ it is attempted to map constants to constants with
the same name in order to avoid renaming. Only if this is not possible any more,
constants are mapped to any constants. There is no such thing with variables,
since an occurence of a variable can only be mapped to an occurence of the same
variable anyway.

6 Version 3: The Compiler with Sequence Variables 108

In the next step, the definition of the rewrite-function is constructed in terms
of a command sequence by calling the two functions (of class Expression)
createCopyingCommands and createCreatingCommands. They work very similar
to their counterparts in Version 2. The only thing that is worth mentioning is that
in function createCreatingCommands once again some “trying of all possibilities”
has to be done. Namely, if one argument of a function is mapped to an argument
of the image of this function, but to a different place in the argument list, this
can be achieved both by moving it to that place or by swapping it with another
argument. Function compareSignatures already tried out both possibilities
and found out which one is better (w. r. t. number of operations), but since
compareSignatures only cares about the number of operations, this information
is not stored and thus it has to be done again.

The very last step coincides with the last step of the previous version. It consists
of performing some very little optimizations of the command sequence:

• Remove redundant assignments: A redundant assignment is an assignment
to a variable (more precisely: element of exprArray) that is never used later
on.

• Fill index holes: Index-holes of exprArray are filled. Please consult Sec-
tion 5.2.4.6 for more information.

The following remark is of particular importance:
Remark 29. In the entire description of the construction of the rewrite-function,
no distinction is made between individual variables and sequence variables. This
is due to the fact that sequence variables behave just as individual variables when
it comes to transforming a tree into another tree: Their instances can be deleted,
created, inserted, . . . just as any other objects, as soon as the length of their
instances is known, which is the case in function rewrite.

6.3 How To Use “Compiler/SV”

In fact, there is nothing to say about how “Compiler/SV” can be used, because
it behaves exactly as “Compiler”. Again, it is a compiler generating programs
that implement specific rule sets. The only difference is that it can deal with
sequence variables, but this affects only its implementation, and not how it is
used. Therefore, let me refer to Section 5.3 for more information.

6 Version 3: The Compiler with Sequence Variables 109

6.4 An Example

This example illustrates both the behavior of the compiler and the behavior of a
compiled program. Therefore let the rule set R consist of the one and only rule

Rule[VarList[a_, b], f[a_, g[a_,b], a_, 1, 2], f[1, g[a_,a_], 2]]

The tree representation of the LHS and RHS of the rule is shown in Figure 6.2.
As usual, and as defined in Section 2.6, a variable with “_” at the end of its name
denotes a sequence variable; In this case, there is only a_.

f

a_ g

a_ b

a_ 1 2

f

1 g

a_ a_

2

Figure 6.2: The LHS and RHS of the rule, represented as trees

There are in total 12 type preserving mappings from the LHS of the rule to the
RHS (compare Section 2.8.3), which are not that many. In general, however, there
are very many type preserving mappings from one expression to another, at least
when the expressions grow huge, and there are more type preserving mappings
than arity preserving mappings.

The best mapping w. r. t. the number of operations in the above rule is given by

{0→ 0, 1→ 4, 2→ 2, 3→ 3, 6→ 1, 7→ 5}

and was computed fully automatically by the compiler. A graphical representation
of the mapping is shown in Figure 6.3.

If one compares Figure 6.3 to Figure 5.2 (which is the figure showing the best map-
ping in the example of Version 2), one realizes that no preserved parts are shown
in this example. The reason is that it is hard to define a concept as “preserved
parts” at all if sequence variables are involved. Take, for instance, function g in
this example: Although it is the second argument of its parent and also its image
is the second argument of its respective parent, that does not mean that the object
corresponding to it in the concrete expression that is rewritten will be the second
argument of its parent as well, since in the rule there comes a sequence variable
before g.

6 Version 3: The Compiler with Sequence Variables 110

f

a_ g

a_ b

a_ 1 2

f

1 g

a_ a_

2

Figure 6.3: The best mapping, indicated by blue arows

The following is the resulting C++ source code of the definition of function
rewrite, where each line in the function body stands for exactly one command of
the command sequence that was automatically generated by the compiler, follow-
ing the strategy presented in Section 6.2.3:

1 void Rule0 :: rewrite (Expression * &expr){
2 exprArray [0] = 0;
3 exprArray [1] = exprArray [0];
4 expr ->move(exprArray [1] , 1);
5 expr -> removeArguments (exprArray [0] , seqVarLen [0]);
6 expr ->move(exprArray [0] , 1);
7 exprArray [2] = 0;
8 exprArray [0]-> move(exprArray [2] , seqVarLen [0]);
9 exprArray [0]-> deleteArguments (exprArray [2] , 1);

10 expr -> deleteArguments (exprArray [0] , seqVarLen [0]);
11 exprArray [0] = 0;
12 expr -> swapArguments (exprArray [0] , 1, 0, 1);
13 expr ->move(exprArray [0] , 1);
14 exprArray [2] = 0;
15 exprArray [0]-> move(exprArray [2] , seqVarLen [0]);
16 exprArray [0]-> insertArguments (exprArray [2] , exprArray [1] , seqVarLen [0]);
17 }

Obviously, the definition consists of 15 instructions. However, some of them should
better be grouped together to form only one single instruction, since from a logical
point of view this makes more sense (like, e. g., the commands in lines 7 and 8:
They simply make the third element of exprArray point to a certain object).

Ad line 4: Moving a NULL-pointer n positions to the right makes it point to the
n-th argument in the argument list, for any n > 0.

Ad line 5: Removing a sequence of objects from an argument list does not delete
the objects! The first parameter of the function defines the last object that is not
removed (if this is a NULL-pointer, removing is started at the very beginning),
the second parameter defines the length of the sequence that is removed.

6 Version 3: The Compiler with Sequence Variables 111

Ad line 16: The insertArguments-command requires three parameters: The first
one defines the argument where the new objects should be inserted after; The
second one points to the first object in the sequence that should be inserted; The
last one defines the number of objects that should be inserted.

The subsequent figure illustrate how the above code works when the function is
called on the expression

f[0, 1, 2, g[0,1,2,3], 0, 1, 2, 1, 2]

that is obviously matched by the LHS of the rule if a_ is instantiated by the
sequence [0, 1, 2] and b is instantiated by 3. Hence, seqVarLen can be assumed
to be an array of length 1, and the value of its only element is the length of the
instance of a_, which is 3. exprArray, on the other hand, is an array of length 3.
The upper part of each of the following figures (Figures 6.4 to 6.12) is dedicated to
the expression as it currently is, whereas the lower part is dedicated to exprArray
and where its elements point to.

f

0 1 2 g

0 1 2 3

0 1 2 1 2

0

Figure 6.4: After executing lines 2, 3 and 4; Recall Section 6.1 about the imple-
mentation of expressions in the compiled programs

6 Version 3: The Compiler with Sequence Variables 112

f

0 1 2

g

0 1 2 3

0 1 2 1 2

0

Figure 6.5: After executing line 5:
expr->removeArguments(exprArray[0], seqVarLen[0])

f

0 1 2

g

0 1 2 3

0 1 2 1 2

Figure 6.6: After executing line 6: expr->move(exprArray[0], 1)

f

0 1 2

g

0 1 2 3

0 1 2 1 2

Figure 6.7: After executing lines 7 and 8

6 Version 3: The Compiler with Sequence Variables 113

f

0 1 2

g

0 1 2

0 1 2 1 2

Figure 6.8: After executing line 9:
exprArray[0]->deleteArguments(exprArray[2], 1)

f

0 1 2

g

0 1 2

1 2

Figure 6.9: After executing line 10:
expr->deleteArguments(exprArray[0], seqVarLen[0])

f

0 1 2

g

0 1 2

1 2

Figure 6.10: After executing lines 11 and 12

6 Version 3: The Compiler with Sequence Variables 114

f

0 1 2

g

0 1 2

1 2

Figure 6.11: After executing lines 13, 14 and 15; The latter two would not be
needed

f

0 1 2

g

0 1 2

1 2

Figure 6.12: After executing line 16:
exprArray[0]->insertArguments(exprArray[2], exprArray[1], seqVarLen[0])

Chapter 7

Tests And Timing Experiments

This chapter is dedicated to some tests and timing experiments which have been
performed in order to compare the three versions as well as the new, destructive
concept to the old, constructive way of rewriting. Various (small to medium-
size1) rule sets have been used to rewrite various expressions again and again,
some thousand times (this number is in the following denoted by N), and the
gross time was recorded using the built-in C++ function clock(). Sometimes
the net time was recorded, too. In some cases, both the time needed for finding
a subexpression and a rule that matches that subexpression and the rewriting-
process were considered, in other cases only the rewriting-process itself, since this
is where the focus of this thesis lies. Of course, before a timing experiment is
presented in the sequel, it is explicitly made clear what parameters were used,
i. e. how often the expression was rewritten, and so on. It is clear that all tests
were not performed only once, but several times to make sure there are no “freak
values”. Please also note that in connection with the compiler-versions (Versions 2
and 3), only the execution times of the compiled programs were considered, and
no compilation times.

As already pointed out, the main instrument for timing was the clock() function
of C++. This function does not return the total time that elapsed since the
start of the program, but only the time that elapsed while the program was really
executed (i. e. the processor-time of the program), in milliseconds. Hence, if it is
called twice in the program, one time before and one time after the computation
that should be timed, and the difference of the two results is taken, then one gets
exactly the processor-time of the computation. More information on clock() can
be found, for instance, in [1].

1The number of rules varies between 2 and 108

115

7 Tests And Timing Experiments 116

The difference between gross- and net time is the following: If an expression has
to be rewritten a lot of times, then also a lot of bookkeeping, that has nothing to
do with rewriting, needs to be done. At the very beginning, the expression must
be copied into a temporary variable, because after rewriting it, it is lost (that
is somehow exactly the purpose of the new concept). However, since afterwards
nobody is interested in the result of the rewriting process, the resulting expression
has to be deleted, and the original expression must be copied again from the
temporary variable in order to start the whole process again, and so on. The
gross time includes all those things, whereas the net time only contains the real
rewriting-process.

Before going on with the tests and timing experiments, some technical details of
the hardware/software that was used:

• Operating System: Windows 7 (64 Bit)

• CPU: Intel Pentium P6200

• CPU Speed: 2.13 GHz × 2

• RAM: 3.68 GB

7.1 Comparing the Different Versions

In this section, some tests are presented that were performed in order to compare
the three different versions. Of course, “Compiler/SV” somehow takes a special
position since it is the only version capable of dealing with sequence variables.
Thus, whenever there is a rule set containing at least one of those sequence vari-
ables, then there is no question about which version to use. As a consequence, no
rule set used for the tests in this section contains sequence variables.

7.1.1 General Parameter Settings

• In all of the following tests both the time needed for finding a subexpression
and a rule that matches this subexpression and the time for rewriting this
subexpression are considered.

• Not only one rule, but a whole rule set is used, and rules are applied as often
as possible, just as in the standard rewriting process.

7 Tests And Timing Experiments 117

7.1.2 Rule Set Addition

The first rule set that was tried is Addition, which can be found in the appendix,
Section B.1. It contains rules that make it possible to add up Integers represented
as Int-objects (see Section 2.3), if the outermost function has name + and two
arguments. The expressions that are rewritten are

+[1039750682, -230147035]

and

+[31, 12]

Note that the numbers can be automatically transformed into Int-objects, if the
program is told to do so (see Section A.4). If the rule set does its job right, then
the result of rewriting the first expression should be 809603647, which is indeed
the case (more precisely, the result is 0809603647, but that is the same value in
terms of numbers), and the second result should be 43, which is also the case.

The value for N , i. e. the total number of rewritings that have been performed, in
this example is 1000 for the first expression, and 10000 for the second one. Table 7.1
shows the gross times, in seconds, which were needed by the three different versions
using rule set Addition.txt.

Expression N Interpreter Compiler Compiler/SV
+[1039750682, -230147035] 1000 8.767 1.528 1.529
+[31, 12] 10000 6.630 1.358 1.342

Table 7.1: Timings for rule set Addition

7.1.3 Rule Set Multiplication

The next rule set is Multiplication, which can also be found in the appendix,
Section B.2. It contains rules that make it possible to multiply Integers again rep-
resented as Int-objects, if the outermost function has name * and two arguments.
The two expressions that are rewritten are

*[46978, 563140]

7 Tests And Timing Experiments 118

and

*[14, 3]

If the rule set does its job right, then the result of rewriting should be 26455190920
for the first expression, which is indeed the case if the maximum number of rewrit-
ing steps is set to somewhere around 300, or higher (see Section A.2), and 42 for
the second expression, which is also the case.

The value for N for rewriting the first expression is 1000, for the second expression
it is 10000. Table 7.2 shows the gross times, in seconds, which were needed by
the three different versions to rewrite the given expressions into the correct results
using rule set Multiplication.

Expression N Interpreter Compiler Compiler/SV
*[46978, 563140] 1000 59.904 11.045 10.296
*[14, 3] 10000 20.202 4.321 3.791

Table 7.2: Timings for rule set Multiplication

7.1.4 Rule Set NatAddition

The next rule set is NatAddition, which, just as all the other rule sets, can be
found in the appendix, Section B.3. It contains rules that make it possible to add
up Natural numbers represented as succ-objects (let me again refer to Section 2.3),
if the outermost function has name + and two arguments. The expression that is
rewritten is

+[31, 12]

The two numbers can be automatically transformed into succ-objects, if the pro-
gram is told to do so. If the rule set does its job right, then the result of rewriting
should be of course 43, which is indeed the case.

The value for N in this example is 10000. Table 7.3 shows the gross times, in
seconds, which were needed by the three different versions to rewrite the given
expression into the correct result using rule set NatAddition.

7 Tests And Timing Experiments 119

Expression N Interpreter Compiler Compiler/SV
+[31, 12] 10000 13.837 11.123 9.672

Table 7.3: Timings for rule set NatAddition

7.1.5 Rule Set NatMultiplication

The next rule set is NatMultiplication, which can be found in Section B.4 in
the appendix. It contains rules that make it possible to multiply Natural num-
bers represented as succ-objects, if the outermost function has name * and two
arguments. The expression that is rewritten is

*[14, 3]

If the rule set does its job right, then the result of rewriting should be of course
42, which is indeed the case.

The value for N in this example is again 10000. Table 7.4 shows the gross times,
in seconds, which were needed by the three different versions to rewrite the given
expression into the correct result using rule set NatMultiplication.

Expression N Interpreter Compiler Compiler/SV
*[14, 3] 10000 33.368 22.05 20.124

Table 7.4: Timings for rule set NatMultiplication

7.1.6 Rule Set NatSum

The next rule set is NatSum, which can be found in Section B.5 in the appendix.
It contains rules that make it possible to add up the first n Natural numbers, for
any Natural number n, which has to be given in terms of a succ-object. The
expression that is rewritten is

Sum[5]

If the rule set does its job right, then the result of rewriting should be of course
15, which is indeed the case.

7 Tests And Timing Experiments 120

The value for N in this example is again 10000. Table 7.5 shows the gross times,
in seconds, which were needed by the three different versions to rewrite the given
expression into the correct result using rule set NatSum.

Expression N Interpreter Compiler Compiler/SV
Sum[5] 10000 8.611 5.476 5.007

Table 7.5: Timings for rule set NatSum

7.1.7 Rule Set PolyAddition

The last rule set is PolyAddition, which can be found in Section B.6 in the
appendix. It contains rules that make it possible to add up two polynomials,
where each is represented as

Poly[c0, Poly[c1, ... Poly[cd, 0]...]]

ci corresponds to the coefficient of xi, for any i. The expression that is rewritten
is

+[Poly[1, Poly[2,0]], Poly[-2, Poly[-1,0]]]

which means that the sum of 1 + 2x and −2− x is computed. If the rule set does
its job right, then the result of rewriting should be of course Poly[-1, Poly[1,
0]], corresponding to −1 + x, which is indeed the case. Note that the coefficients
have to be given in terms of Int-objects, since this rule sets builds on rule set
Addition.

The value for N in this example is again 10000. Table 7.6 shows the gross times,
in seconds, which were needed by the three different versions to rewrite the given
expression into the correct result using rule set PolyAddition.

Expression N Interpreter Compiler Compiler/SV
+[Poly[1,Poly[2,0]],Poly[-2,Poly[-1,0]]] 10000 15.397 3.448 2.995

Table 7.6: Timings for rule set PolyAddition

7 Tests And Timing Experiments 121

7.1.8 Rule Set SequentCalculus

This rule set, SequentCalculus, is used for presenting a rule set that contains
sequence variables. As already pointed out earlier, such a rule set cannot be used
for comparing the various versions, but only to present the absolute time Version 3
needed to rewrite an expression N times. Rule set SequentCalculus described
in Section B.8 contains rules that make it possible to find out the truth values
of propositional formulae, built from the logical connectives not (¬), and (∧), or
(∨), impl (⇒) and equiv (⇔). The expression that is rewritten is

prove[equiv[impl[A,B], not[and[A,not[B]]]]]

which means that it is checked whether A⇒ B is logically equivalent to ¬(A∧¬B).
If the rule set does its job right, then the result of rewriting should be proved,
which is indeed the case.

The value for N in this example is again 10000, and the resulting gross time
Version 3 needed for rewriting is 4.898 seconds.

7.1.9 Summary

All the tables from before are put together in Table 7.7, which makes it possible
to conclude various things from the raw data:

• First of all, the fastest version seems to be “Compiler/SV” (Version 3), which
is rather surprising. Although the implementation of expressions in its com-
piled programs involves lists rather than arrays, which means that arguments
of functions cannot be accessed directly in constant time, it takes on average
only 92% of the time “Compiler” (Version 2) takes for rewriting exactly the
same expressions.

• Secondly, the slowest version seems to be the interpreter (Version 1), as
expected. It takes on average almost four times as long as “Compiler/SV”,
the fastest one.

• It is apparent that multiplication takes much longer than addition, using the
given rule sets, both when representing numbers as Int- and as succ-objects.
This, however, is not very surprising, since every multiplication involves lots
of additions.

7 Tests And Timing Experiments 122

• It is also apparent that representing (Natural-) numbers as Int-objects rather
than succ-objects makes the rewriting process much faster. If one compares
the timings for Addition + +[31,12] and NatAddition, then the first one
takes on average, taking into account all versions, only 25% of the time of the
second one. Comparing Multiplication + *[14,3] to NatMultiplication
yields a similar result: The first one takes only 33% of the time the second
one takes.

Rule set N Interpreter Compiler Compiler/SV
Addition (+[1039750682,-230147035]) 1000 8.767 1.528 1.529
Addition (+[31,12]) 10000 6.630 1.358 1.342
Multiplication (*[46978,563140]) 1000 59.904 11.045 10.296
Multiplication (*[14,3]) 10000 20.202 4.321 3.791
NatAddition 10000 13.837 11.123 9.672
NatMultiplication 10000 33.368 22.058 20.124
NatSum 10000 8.611 5.476 5.007
PolyAddition 10000 15.397 3.448 2.995
SequentCalculus 10000 4.898

Table 7.7: Timings for all rule sets

7.2 Comparing Old (Constructive) and New
(Destructive) Concept

This section presents some tests that have been performed in order to compare the
old, constructive concept of rewriting to the new, destructive one this thesis is all
about. Therefore, it was necessary to implement the old concept as well, at least
in connection with Version 1. Section A.8 shows how the old-style approach rather
than the new one can be used there. Concerning the compiler-versions (Versions 2
and 3), it was sufficient to just provide alternative definitions for the rewrite-
functions of the rules that were tested. Those definitions were given manually, i. e.
without modifying the compilers.

7.2.1 General Parameter Settings

• In all of the following tests only the time needed for rewriting an expression
is considered, no subexpression- and rule-finding.

7 Tests And Timing Experiments 123

• For each expression only one single rule is used to rewrite it. This rule is
already known in advance to match the expression.

• This one rule is applied only once, even if it was possible to apply it further.
Afterwards, the original expression is rewritten again, and so on, in total N
times.

• The value of N is the same throughout the whole section: It is 100000.

• Both the net- and the gross times were recorded.

All the rules are stored in one and only rule set. Since neither the rule set as
a whole, nor the single rules make any sense in terms of applicability to other
problems (like, say, addition of Integers), this rule set cannot be found in the
appendix. Instead, it is shown here:

1 # MAKE_NOTHING
2 Rule[VarList [a, b], f[a, b, g[c, c]], g[c, f[a, b, c]]]
3 Rule[VarList [a, b], g[a, b], f[a, g[a, c], b]]
4 Rule[VarList [a, b], f[a, g[a, c], b], g[a, b]]
5 Rule[VarList [a, b], f[a, b, h[c]], g[a, h[a]]]
6 Rule[VarList [a], f[a, h[a], a], g[c, g[d, d]]]

It consists of five rules, where each rule has a specific purpose:

1. In the first one, there are exactly the same objects on the LHS and on the
RHS. Hence, the difference between the old way of rewriting and the new
one should be rather big.

2. In the second one, every object on the LHS also appears on the RHS, which
means that everything can be reused. However, unlike the first rule, there
are also objects on the RHS that have to be created.

3. In the third rule it is the other way round: Every object on the RHS also
appears on the LHS, which means nothing has to be created, but some objects
have to be deleted.

4. The fourth rule is a blend of the seond and the third: Some objects can be
reused, others have to be deleted, and some objects have to be created.

5. In the last rule, nothing can be reused and the new expression has to be
created entirely.

7 Tests And Timing Experiments 124

7.2.2 Rule 1

The first test deals with the first rule, i. e.

Rule[VarList[a, b], f[a, b, g[c, c]], g[c, f[a, b, c]]]

and the expression it is applied on is

f[+[1,2], 0, g[c,c]]

Table 7.8 shows the timings of the three different versions, both when using the
old, constructive approach and the new, destructive one.

Concept net/gross Interpreter Compiler Compiler/SV
Constructive net 1.470 1.329 1.181
Constructive gross 3.166 2.792 2.309
Destructive net 0.281 0.092 0.077
Destructive gross 1.919 1.544 1.232

Table 7.8: Timings for the first rule

7.2.3 Rule 2

The second test deals with the second rule, i. e.

Rule[VarList[a, b], g[a, b], f[a, g[a, c], b]]

and the expression it is applied on is

g[+[1,2], 0]

Table 7.9 shows the timings of the three different versions, both when using the
old, constructive approach and the new, destructive one.

7 Tests And Timing Experiments 125

Concept net/gross Interpreter Compiler Compiler/SV
Constructive net 1.701 1.563 1.203
Constructive gross 3.026 2.793 2.122
Destructive net 0.840 0.703 0.608
Destructive gross 2.184 1.981 1.529

Table 7.9: Timings for the second rule

7.2.4 Rule 3

The third test deals with the third rule, i. e.

Rule[VarList[a, b], f[a, g[a, c], b], g[a, b]]

and the expression it is applied on is

f[+[1,2], g[+[1,2],c], 0]

Table 7.10 shows the timings of the three different versions, both when using the
old, constructive approach and the new, destructive one.

Concept net/gross Interpreter Compiler Compiler/SV
Constructive net 1.235 1.216 0.968
Constructive gross 3.136 2.839 2.153
Destructive net 0.516 0.345 0.329
Destructive gross 2.340 1.966 1.498

Table 7.10: Timings for the third rule

7.2.5 Rule 4

The fourth test deals with the fourth rule, i. e.

Rule[VarList[a, b], f[a, b, h[c]], g[a, h[a]]]

and the expression it is applied on is

7 Tests And Timing Experiments 126

f[+[1,2], 0, h[c]]

Table 7.11 shows the timings of the three different versions, both when using the
old, constructive approach and the new, destructive one.

Concept net/gross Interpreter Compiler Compiler/SV
Constructive net 1.879 1.577 1.215
Constructive gross 3.557 3.214 2.200
Destructive net 1.015 0.935 0.421
Destructive gross 2.777 2.403 1.497

Table 7.11: Timings for the fourth rule

7.2.6 Rule 5

The fifth test deals with the fifth rule, i. e.

Rule[VarList[a], f[a, h[a], a], g[c, g[d, d]]]

and the expression it is applied on is

f[+[1,2], h[+[1,2]], +[1,2]]

Table 7.12 shows the timings of the three different versions, both when using the
old, constructive approach and the new, destructive one.

Concept net/gross Interpreter Compiler Compiler/SV
Constructive net 1.435 1.112 1.155
Constructive gross 3.604 3.213 2.293
Destructive net 1.504 1.211 0.670
Destructive gross 3.666 3.183 1.965

Table 7.12: Timings for the fifth rule

7.2.7 Summary

Since the net times are the important ones, in the following considerations only
the net times are taken into account. Comparing the times from the constructive
approach to those of the destructive approach suggest the following conclusions:

7 Tests And Timing Experiments 127

• The new, destructive concept that was presented in this thesis is really faster
than the old, constructive one: Depending on the rule, it is up to seven times
as fast. However, if the rule does not allow exploiting the new concept, as
is the case in the fifth rule, then the new approach is not really faster, as
expected. Altogether, the net times of all five rules of all versions using the
destructive way of rewriting make up only about 50% of the times using the
constructive way.

• The tests performed in this section confirm the results obtained in the previ-
ous section: “Compiler/SV” is on average a bit faster than “Compiler”, and
the interpreter is the slowest version.

The following remark is important:
Remark 30. When comparing the two concepts, it does matter which expressions
the variables in the rules are instantiated with. The bigger those expressions, the
bigger the difference in the timings.

Therefore, a theoretical complexity analysis, which deals exactly with the differ-
ences between the two concepts, is presented in Section 8.1. This complexity
analysis confirms the results obtained in this section.

7.3 Comparing “Compiler/SV” to Mathematica

“Compiler/SV” (Version 3) was not only compared to the other two versions,
but also to the established Mathematica system ([3]). For that purpose, rule set
SequentCalculus was implemented in a Mathematica-notebook as well, following
the Mathematica-syntax for rewrite rules, but leaving the order and meaning of the
rules unchanged. The expression that was rewritten is the same as in Section 7.1.8,
namely

prove[equiv[impl[A,B], not[and[A,not[B]]]]]

which by the way is also a perfectly well-formed expression in Mathematica. The
command that was used for timing is

Timing[For[i = 0, i < 10000, i++,
prove[equiv[impl[A, B], not[and[A, not[B]]]]]

]]

7 Tests And Timing Experiments 128

Hence, N was set to 10000, just as in Section 7.1.8. The time consumed by the
above computation is in the area of 1.685 seconds, compared to 4.898 seconds
consumed by “Compiler/SV” (both gross times). Thus, Mathematica is a lot
faster; This, however, could mostly be due to a better matching strategy pursued
by Mathematica, similar to what is also suggested in Section 8.2.2.

Although a module containg the rules that define the propositional sequent calculus
has also been created for the use in connection with Maude ([2], see Section B.9
in the appendix), it seems to be impossible to perform timing experiments like
the ones above in Maude: Maude only reports the time needed for rewriting an
expression once (which is, as expected, 0 in the given example), but it is not
possible to rewrite an expression N times.

Chapter 8

Conclusion

Now that all the important aspects of the new, destructive concept have been
explained, together with a detailed description of the three different versions that
have been implemented, it is time to summarize everything a little bit and draw
some conclusions.

The main goal of this thesis was to implement various rewrite-systems that make
use of a new idea, proposed by my supervisor Prof. Jebelean: When applying a
rewrite-rule to an expression, do not delete the entire old expression and construct
the entire new expression, but rather reuse all objects that can be reused. Do so
by simply moving them to their new places.

The results are now three different programs, called “Interpreter” (Version 1),
“Compiler” (Version 2) and “Compiler/SV” (Version 3; compiler that is also ca-
pable of dealing with sequence variables, see 2.6), each implementing the new idea
and capable of solving “real” problems, like adding Integers, if equipped with the
right rule set. Every version is “special”, in the sense that it contains features the
others do not have. The interpreter, for instance, does not need to compile rule
sets before they can be used, but uses them immediately. The drawback, on the
other hand, is that it is by far the slowest program, as can be seen in virtually
every timing experiment of Chapter 7.

It is quite hard to say which version is the best one, since this always depends
on what the user wants to do. But one thing is certain: “Compiler/SV” is not
only the most powerful version (capable of treating sequence variables), but sur-
prisingly also the fastest: As can be seen in Chapter 7, it is a bit faster than
“Compiler”. In any case, none of the three versions can already compete with
one of the established rewrite-systems like Mathematica ([3]) or Maude ([2]) by

129

8 Conclusion 130

any means (speed, functionality), but in my opinion they, and especially the new
concept, provide solid foundations for future systems. This opinion is also based
on the short complexity analysis of the next section.

8.1 Complexity Analysis

This section deals with a short theoretical analysis of the time-complexity of the
new concept of rewriting presented in this thesis. More precisely, the complexities
of the old-style approach and the new approach are compared and conclusions are
drawn from that.

Before the analysis can be performed, some definitions have to be made. First of
all, the complexity of rewriting an expression in one step, i. e. applying one rule
to it, depends on both the rule and the expression. Therefore, let in the following
denote r the rule and e the expression (which is matched by r), and

• Let fL,n and fR,n denote the number of function symbols with arity n on the
LHS and RHS of r, respectively, for all n

• Let vL,n and vR,n denote the number of occurences of the variable with index
n on the LHS and RHS, respectively, of r, for all indices n

• Let cL and cR denote the number of constants on the LHS and RHS of r,
respectively

• Let D denote the maximum arity of functions occuring on either side of r,
and V the number of different variables

• Let ξn denote the number of function symbols in the instance of the variable
with index n, for all indices n

• Let γn denote the number of constants in the instance of the variable with
index n, for all indices n

Let further C denote the number of elementary operations for creating/deleting
one instance of a derived class of class Expression, i. e. a function or constant or
variable.

Of course, if one wants to compare the new concept to the old one, at the beginning
one needs to make clear how constants are treated in programs implementing the
old concept: Are multiple occurences of one and the same constant represented

8 Conclusion 131

by only one instance of class Constant, as is the case in Versions 1 and 2, or by
many instances, like in Version 3? Since the first possibility makes more sense
for programs that delete/create everything, i. e. follow the constructive concept,
it is assumed that multiple occurences are represented by one and the same ob-
jects. The number of elementary operations needed for applying r to e using the
constructive old-style approach is given by

O
(

D∑
i=0

(fL,i + fR,i) +
V∑
i=0

(vL,i + vR,i)ξi
)
· C (8.1)

The validity of the above formula is quite apparent: Everything in e which is not a
constant has to be deleted, and everything in the RHS of r has to be created, unless
it is a constant. Please note two things: Firstly, in the second sum ranging over
the variables, each summand is multiplied with ξi. This is because not only the
roots of the instances have to be deleted/created, but the entire instances (again
except constants). Secondly, although the main part of the formula is enclosed in
an O, which means the number of operations is only of that order, it is multiplied
with the constant C. This is only done to indicate that each of those operations
involves one deletion/creation.

8.1.1 Arity Preserving

Let us first consider the arity preserving case. This means, above all, that multiple
occurences of one and the same constant are represented by only one instance of
class Constant, see Section 3.2.2, which happens in Versions 1 and 2. The number
of elementary operations needed for applying r to e using the destructive, new
approach is given by

A1 + A2 (8.2)

where
A1 = O

(
D∑
i=0
|fL,i − fR,i|+

V∑
i=0
|vL,i − vR,i|ξi

)
· C (8.3)

and
A2 = O

(
D∑
i=0

min{fL,i, fR,i}+
V∑
i=0

min{vL,i, vR,i}
)

(8.4)

A1 counts the number of operations needed for deleting/creating objects. Unlike
in Formula 8.1, not every non-constant object has to be deleted/created, but only
the ones that are too many on the LHS/RHS. A2 counts the number of operations
needed for putting all the other objects, i. e. the ones that are reused, to their
correct positions. The most important thing to notice in A2 is that the summands
in the second sum, ranging over the variables, are not multiplied with the ξi’s.

8 Conclusion 132

This is because moving a subexpression (or more precisely: subtree) to a new
position only requires moving the root. Please also note that in connection with
Version 2, A2 only defines an upper bound, since Version 2 always chooses the
“best” mapping from the LHS of r to the RHS of r, which means that some of the
operations can be avoided.

8.1.2 Type Preserving

In addition to the arity preserving case there is also the type preserving case, where
multiple occurences of constants are represented by different objects, and where
the arity of functions can change. The number of elementary operations needed
for applying r to e using the destructive, new approach is given by

T1 + T2 (8.5)

where

T1 = O
(
|
D∑
i=0

fL,i −
D∑
i=0

fR,i|+
V∑
i=0
|vL,i − vR,i| · (ξi + γi) + |cL − cR|

)
· C (8.6)

and

T2 = O
(

min{
D∑
i=0

fL,i,
D∑
i=0

fR,i}+
V∑
i=0

min{vL,i, vR,i}+ min{cL, cR}
)

(8.7)

T1 and T2 are quite similar to A1 and A2, respectively. The only differences between
T1 and A1 are the additional summand |cL−cR|, the “·(ξi+γi)” in the sum over the
variables, and the fact that no distinction is made between the arities of functions
on either side. Similar for T2 and A2.

8.1.3 Complexity: Conclusion

The conclusion that can be drawn from the previous considerations is the following:
The efficiency of the new concept that was presented in this thesis not solely
depends on the rules that are used, but also on the concrete expressions that are
rewritten, or more precisely, on the size of the variable-instances. The bigger those
instances, the better is the performance of the destructive approach compared to
the constructive approach. This can be seen quite easily: ξi and γi only contribute
to the operations treating the variables that are really deleted/created, but not to
the others.

8 Conclusion 133

This observation immediately leads to the next, rather obvious conclusion: The
more objects can be reused, the better. This does not only hold for variables, but
for functions and constants as well, and of course only depends on the rule and
not on the expression that is rewritten.

The last thing one can conclude neither depends on rules, nor on expressions, but
only on the system where the programs run: Constant C denotes the number of
elementary operations needed for deleting/creating objects. Obviously, the more
efficient these tasks are handled by the system, the less the advantage of the
destructive approach over the constructive one.

8.2 Future Work

This section contains some hints for future work, separated into work that could
be done for adding functionality to the programs, and work for improving their
implementation.

8.2.1 Program Features

Although the various program already carry a lot of functionality, there are still
several things that could be done to enhance them. For instance, in order to
support the end-user, one could think about adding an “intelligent parser” that is
capable of transforming input in “natural” style into the format that is requested
by the programs. A very short example would be the very simple formula 1 + 2
that could be automatically tronsformed into +[1, 2]. Of course, this idea has
nothing to do with the topic this thesis is about, not even with rewriting at all,
but still it would make the use of the systems much more convenient.

Another idea would be to put all versions together into one single program which
then only calls the already existing programs if an expression is to be rewritten.
For instance, the user first types in the expression and then, before it is actually
rewritten, specifies the version he wants to use. Just like the first idea, this would
of course have nothing to do with rewriting itself, but would make life a lot easier
for the user.

One thing that could prove to be a good idea is the idea of using one unique
universal function. If this universal function is called, say, F, then the user-defined
expression f[x] would not be represented as f[x], but as F[f, x]. This would

8 Conclusion 134

allow two new concepts: Firstly, in rules, functions could also be variables, which
means the user would have the possibility to construct 2nd order rules that can be
applied to any function, independent of its name. Secondly, it would be possible to
form well-formed expressions like f[x][y, z], represented as F[F[f, x], y, z].

The next idea of enhancement is maybe the most important. Almost every other
rewriting system, including MAUDE ([2]) and Mathematica ([3]), allow the user
to equip rewrite rules with additional conditions: Not only the pattern of the
expression has to be right, but it has to fulfill a condition as well, as might be,
for instance, that a variable must be instantiated with a number, and that this
number has to be less than another number. Up to now, this is not possible at all
in neither of the three versions developed in the frame of this thesis.

The last idea deals with the performance of the systems and is due to my supervisor
Prof. Jebelean. Until now, everything the programs do depends on the rule set
that has been specified before. For example, if one specifies an empty rule set
and types in the expression +[1, 2], then nothing happens although it is quite
clear what should happen: The program should compute the sum of the two
Natural numbers 1 and 2. However, there is no rule that tells the program to do
so! So, why not provide a small library of basic built-in functions, like addition
and multiplication? They would not only make it possible to compute simple
arithmetic expressions without falling back upon user-defined rewrite rules, but
also make the rewriting process much more efficient at all: More than 50 rules are
needed for defining addition for numbers represented as Int-objects! 50 rules for
a rather simple arithmetic operation that can also be easily performed directly by
the programs, even for arbitrarily big numbers.

8.2.2 Implementation

There is still room for improvement not only for the functionality of the programs,
but also for their implementation. The first idea deals with the strategy for find-
ing the best mapping between two expressions, as presented in Sections 5.2.4.1
and 6.2.3. Maybe there is a better approach than just trying out all possibilities.
However, this only affects the efficiency of the compilers, but not the efficiency of
the compiled programs!

The second idea for future work is about the matching-functions, especially the
ones in Version 3. Although a better strategy than brute-force is already presented
in this thesis, maybe this strategy could still be refined and made more efficient.
This, in contrast to the first idea proposed in this section, would then really make
the rewriting process faster! Also, one could think about arranging the rewrite

8 Conclusion 135

rules not in a “flat” list, but analyzing them when they are loaded and then
arranging them in a more efficient way. This means, for instance, depending on
the outermost symbol of the expression that is rewritten, only those rules that
could really possibly match the expression are tried, and the others are ignored.

The next suggestion for future work has to do with the concept of code optimiza-
tion, presented in Section 5.2.4.6. This concept can still be refined in order to
handle more subtle redundancy in the command sequence.

The very last idea was raised by Dr. Wolfgang Windsteiger from the Research
Institute for Symbolic Computation. It is basically built on the following con-
sideration: Whenever an object has to be deleted because it is not needed any
more, then why not only remove it and store it somewhere, but not delete it, since
it might be needed at some point in the future when a different rule is applied
to a different expression? This approach could further decrease the number of
deletion/creation operations and thus improve the performence of the programs.

Appendix A

Special commands

The following is a complete list of all special commands that can be executed in
“Interpreter” (Version 1) and the compiled programs of “Compiler” and “Compil-
er/SV” (Versions 2 and 3), together with a detailed explanation. Please be aware
that some of them are only available in “Interpreter”; They are marked with “*”.

A.1 Closing the Program

The command exit simply closes the program. Although one could of course also
just close the window by clicking on the small #, it is recommended to do it this
way, because some dynamically allocated memory needes to be freed again.
Remark 31. The command exit in an input file does not close the program, but
only stops processing the file.

A.2 Maximum Number of Rewriting Steps

In order to prevent the program from running forever, as might be the case when
working with certain rule sets, only a maximum number of rewrite rules is applied
(or less, if no rule can be applied any more). This limit, which by default is
100, can be set with the command !n, where n has to be a non-negative integer
standing for the new value of the maximum. If n is 0, that value is set back to
100. In any case, the output of this command is exactly the maximum number of
rewriting steps.

136

A Special commands 137

It is also possible to only retrieve, but not set, that number. Just type in ?steps.
Please note that whenever the maximum number of rewriting steps is really
reached, this is indicated by the additional output (step limit reached).

A.3 Rewriting the previous Result

Sometimes it is quite useful to further rewrite the expression that has been rewrit-
ten before, because the maximum number of rewriting steps was reached, but the
result is not yet satisfactory. In this case, just type in % and hit ENTER. Note
that, if there is no previous result at all, the result of % will be <NOTHING>.

A.4 Integers and Natural Numbers

As promised in Section 2.3, it is possible to automatically transform Integers and
Natural numbers into succ- and Int objects. The command !makesucc makes
the program from now on apply the first transformation, the command !makeint
the second one, and the command !makenothing makes the program not apply
any transformation at all (this is the default setting). The output of any of those
commands is a pretty-print of the respective command, and a Succ, Int or nothing
in front of the “»” (input indicator) appears to indicate what the current setting
is.
All of those instructions also have an inverse, so to say, which means it is possible
to print succ- and Int objects in the resulting expression not as such objects, but
again as normal numbers. The command !printsucc does the job for succ ob-
jects, the command !printint for Int objects, and the command !printnothing
makes the program print everything as it is (this is the default setting). Note that
the make- and the print versions are completely independent of each other, i. e.
it is absolutely fine to have the setting !makesucc and !printint.

A.5 Tracing the Rewriting Process

In some cases, especially when fixing bugs in rule sets, it is necessary to know, given
a concrete expression, which rule is applied in each step and what the intermediate
result is. This is of course possible, namely with the command !trace. This
command prints a “_” somewhere in front of the “»” and, whenever rewriting an

A Special commands 138

expression, not only shows the final result, but also all intermediate steps. This
is done in the following way: Each step consists of three columns, where the first
one describes the number of the respective step (starting from 1), the second one
the index of the rule that is applied (indices start from 0), and the third one the
resulting expression.
The command !untrace stops tracing.

A.6 Rewriting Strategy

Every program has two different strategies implemented that determine which
rewrite rule is applied to the expression (or a subexpression). In some situations,
more than only rule can be applied, and then, of course, the program needs to
decide: Either it applies the first one (first w. r. t. the rule set), or it chooses a
random one. This behavior can be controlled with the two commands !f and !r.
The first one makes the program always choose the first applicable rule (default),
the second one a random applicable rule; The outputs are first and random,
respectively. Note that the way how the program searches the expression for
suitable (rewritable) subexpressions (see Section 3.5) cannot be changed.
The command ?strategy returns first if the current strategy always chooses the
first rule, or random otherwise.

A.7 Rewriting an Input File

As explained in the section about input files (Section 4.2.2), it is possible to rewrite
whole sets of expressions at once, it they are stored in such an input file. This
works in the following way: The special command file filename searches the
input file given by filename and processes it. The output is simply Rewriting
filename ... Done; If the file does not exist, the output is File not found.
Please note that, as usual, also the file extension has to be given.

A.8 Rewriting Algorithm*

In Version 1 it is possible to change the algorithm that is used to rewrite expressions
from the new, destructive concept (reusing objects; what this thesis is all about)
to the old, constructive one (creating and deleting everything). This is mainly due

A Special commands 139

to the fact that it should be possible to compare the two approaches by means of
timing experiments.
The command !reuse chooses the first algorithm for all upcoming rewriting tasks
(default), the command !delete the second one.

A.9 Performing Timing Experiments

There are several ways to perform timing experiments. Of course, the most im-
portant thing is to know how much time a computation takes; The C++ built-in
command clock() is used for that purpose - Please let me refer to documentation
about C++, for example [1] in order to see what exactly the behavior of the com-
mand clock() is (might differ on various platforms).
Sometimes it is not enough to only rewrite an expression once, because the dura-
tion of that process is too short to get a time different from just 0. So, there is
also the possibility to rewrite one and the same expression N times and retrieve
the time needed for the whole computation. The command !tN tells the program
to perform such timing experiments (N has to be a non-negative integer). If N is
0, the timing experiments are aborted, otherwise, a # appears in front of the “»”
to indicate that from now on timing experiments are performed on all subsequent
expressions. The output of such an experiment consists of two lines: The first
line shows the net time that was needed (only matching and rewriting, no book-
keeping), the second one shows the gross time (the overall time from the start of
the experiment to its end). Bookkeeping here mainly means storing the original
expression once and copying it again and again, and deleting the results again and
again.
The command !t is a shortcut: If currently no timing experiments are performed,
then it has the same effect as !t1000; Otherwise, it has the same effect as !t0.
The command ?t returns the number of rewriting processes that are carried out
for timing experiments, or 0, if no timing experiments are performed at all.

Since the previously mentioned experiments also include the time needed for find-
ing a suitable rule that matches a suitable subexpression, there is a way how to
really only compute the duration of the rewriting algorithm itself. For that pur-
pose, a single rule from the rule set can be chosen and successively applied to
the expression. The number of those applications is controlled in the same way
as above, by the command !tN , and the index of the rule can be set with the
command !ri. i has to be an integer between 0, inclusive, and the total number of
rules in the rule set, exclusive, specifying the index of the rule (any other number
aborts that kind of timing experiments). The output has the same structure and
meaning as described above. However, if the rule does not match the expression,

A Special commands 140

the output is Expression is not matched by rule i, and no experiment is per-
formed.
The command ?r returns the index of the current rule, or -1 if no such rule has
been specified.
Remark 32. Performing any kind of timing experiments automatically switches
tracing off, and vice versa.

A.10 Printing all Symbols

The command ?symbols returns the list of all (function-/constant-) symbols that
have been loaded into the program up to now, either because they occur in the
rule set, or they occured in an expression.

A.11 Printing all Constants*

In Version 1, the command ?constants returns the list of all constant-symbols
that have been loaded into the program up to now, either because they occur in
the rule set, or they occured in an expression.

A.12 Printing all Rule Sets*

In Version 1, the command ?rulesets returns the list of all rule sets that have
been loaded into the program. Although only one rule set can be explicitly spec-
ified at the start of the program, that rule set might contain various Needs[...]
commands (see Section 2.5 for more information on the Needs[...] command).

A.13 Printing all Rules*

In Version 1, the command ?rules returns the list of all rules that are contained
in any of the loaded rule sets, in their original order. The output format of the
rules follows the definition of expressions (Section 2.2; similar to rules in rule sets):

A Special commands 141

• The outermost symbol is Rule

• The first argument is the number of variables used in the rule

• The second argument is the LHS of the rule; Variable i is written as #i

• The third argument is the RHS of the rule; Variable i is either written as
#i or as VPj, where j is the position (Section 2.2.2) of such a variable on
the LHS; Function symbols are either written just as they are, or as FPj(χ),
where j is the position of a function of the same arity on the LHS, and χ is
the name of the function on the RHS.

This rather complicated way of writing down rules is due to mappings (Section 2.8):
In Version 1, every rule is associated with exactly one arity preserving mapping
from its LHS to its RHS (this is explained in far more detail in Chapter 4.1). VPj
at position k in the RHS means that j → k is an element of that mapping, and
FPm(χ) at position n in the RHS means that m→ n is an element.

A.14 Printing a single Rule*

In Version 1, the command ?i returns the i-th rule in the rule set in the same
format as described above. If i is less than 0 or greater or equal to the number of
rules, the output is Index out of bounds.

Appendix B

Rule Sets

Every reasonable rule set that appears in this thesis, except Sorting.txt,
SequentCalculus.txt and SC.maude, is taken (sometimes in a slightly modified
form) from [12]. The subsequent sections show all of them, together with a short
description.

B.1 Addition

Rule set Addition can be used to define addition of Int-objects in terms of rewrite
rules. It does not depend on any other rule set and contains in total 61 rules.

1 # MAKE_NOTHING
2 Rule[VarList [a], Int[a, DC [8 ,1]] , Int[a, Int [8 ,9]]]
3 Rule[VarList [a,b], Int[DC[a,b], DC [8 ,1]] , Int[a, 9]]
4 Rule[VarList [i,j], +[9 , Int[i,j]], +[Int [9 ,9] , Int[i,j]]]
5 Rule[VarList [i,j], +[Int[i,j], 9], +[Int[i,j], Int [9 ,9]]]
6 Rule[VarList [i,j,k,l], +[Int[i,j], Int[k,l]], Int [+[i,k], +[j,l]]]
7 Rule[VarList [i,j,k,l], Int[DC[i,j], Int[k,l]], Int[i, +[j, Int[k,l]]]]
8 Rule[VarList [i,j,k], +[i, Int[j,k]], Int [+[i,j], k]]
9 Rule[VarList [i,j,k], +[Int[j,k], i], Int [+[j,i], k]]

10 Rule[VarList [i,j,k,l], +[DC[i,j], DC[k,l]], DC [+[i,k], +[j,l]]]
11 Rule[VarList [i,j,k], +[DC[i,j], k], DC [+[i,k], j]]
12 Rule[VarList [i,j,k], +[k, DC[i,j]], DC [+[i,k], j]]
13 Rule[VarList [i,j], Int[DC[i,j], 0], Int[i, Int[j ,0]]]
14 Rule[VarList [i,j], Int[DC[i,j], 9], Int[i, 0]]
15 Rule[VarList [m], +[m, 0], m]
16 Rule[VarList [m], +[0 , m], m]
17
18 Rule[VarList [], +[1 , 1], 2]
19 Rule[VarList [], +[1 , 2], 3]
20 Rule[VarList [], +[1 , 3], 4]
21 Rule[VarList [], +[1 , 4], 5]
22 Rule[VarList [], +[1 , 5], 6]

142

B Rule Sets 143

23 Rule[VarList [], +[1 , 6], 7]
24 Rule[VarList [], +[1 , 7], 8]
25 Rule[VarList [], +[1 , 8], 9]
26 Rule[VarList [], +[1 , 9], DC[0, 1]]
27
28 Rule[VarList [], +[2 , 2], 4]
29 Rule[VarList [], +[2 , 3], 5]
30 Rule[VarList [], +[2 , 4], 6]
31 Rule[VarList [], +[2 , 5], 7]
32 Rule[VarList [], +[2 , 6], 8]
33 Rule[VarList [], +[2 , 7], 9]
34 Rule[VarList [], +[2 , 8], DC[0, 1]]
35 Rule[VarList [], +[2 , 9], DC[1, 1]]
36
37 Rule[VarList [], +[3 , 3], 6]
38 Rule[VarList [], +[3 , 4], 7]
39 Rule[VarList [], +[3 , 5], 8]
40 Rule[VarList [], +[3 , 6], 9]
41 Rule[VarList [], +[3 , 7], DC[0, 1]]
42 Rule[VarList [], +[3 , 8], DC[1, 1]]
43 Rule[VarList [], +[3 , 9], DC[2, 1]]
44
45 Rule[VarList [], +[4 , 4], 8]
46 Rule[VarList [], +[4 , 5], 9]
47 Rule[VarList [], +[4 , 6], DC[0, 1]]
48 Rule[VarList [], +[4 , 7], DC[1, 1]]
49 Rule[VarList [], +[4 , 8], DC[2, 1]]
50 Rule[VarList [], +[4 , 9], DC[3, 1]]
51
52 Rule[VarList [], +[5 , 5], DC[0, 1]]
53 Rule[VarList [], +[5 , 6], DC[1, 1]]
54 Rule[VarList [], +[5 , 7], DC[2, 1]]
55 Rule[VarList [], +[5 , 8], DC[3, 1]]
56 Rule[VarList [], +[5 , 9], DC[4, 1]]
57
58 Rule[VarList [], +[6 , 6], DC[2, 1]]
59 Rule[VarList [], +[6 , 7], DC[3, 1]]
60 Rule[VarList [], +[6 , 8], DC[4, 1]]
61 Rule[VarList [], +[6 , 9], DC[5, 1]]
62
63 Rule[VarList [], +[7 , 7], DC[4, 1]]
64 Rule[VarList [], +[7 , 8], DC[5, 1]]
65 Rule[VarList [], +[7 , 9], DC[6, 1]]
66
67 Rule[VarList [], +[8 , 8], DC[6, 1]]
68 Rule[VarList [], +[8 , 9], DC[7, 1]]
69
70 Rule[VarList [], +[9 , 9], DC[8, 1]]
71
72 Rule[VarList [m,n], +[m, n], +[n, m]]

B.2 Multiplication

Rule set Multiplication can be used to define multiplication of Int-objects in
terms of rewrite rules. It depends on rule set Addition and contains 47 new rules,
making in total 108 rules.

B Rule Sets 144

1 Needs [Addition .txt]
2 # MAKE_NOTHING
3 Rule[VarList [d1 , d2 , c1 , c2],
4 *[Int[d1 ,c1], Int[d2 ,c2]], Int [*[d1 ,d2], +[**[d1 ,c2], *[c1 ,Int[d2 ,c2]]]]]
5 Rule[VarList [d1 , d2 , c2], **[d1 , Int[d2 ,c2]], Int [*[d1 ,d2], **[d1 ,c2]]]
6 Rule[VarList [m], *[m, 0], 0]
7 Rule[VarList [m], *[0 , m], 0]
8 Rule[VarList [m], *[m, 1], m]
9 Rule[VarList [m], *[1 , m], m]

10 Rule[VarList [d], **[d, 0], 0]
11 Rule[VarList [d], **[0 , d], 0]
12 Rule[VarList [d], **[d, 1], d]
13 Rule[VarList [d], **[1 , d], d]
14
15 Rule[VarList [], *[2 , 2], 4]
16 Rule[VarList [], *[2 , 3], 6]
17 Rule[VarList [], *[2 , 4], 8]
18 Rule[VarList [], *[2 , 5], DC[0, 1]]
19 Rule[VarList [], *[2 , 6], DC[2, 1]]
20 Rule[VarList [], *[2 , 7], DC[4, 1]]
21 Rule[VarList [], *[2 , 8], DC[6, 1]]
22 Rule[VarList [], *[2 , 9], DC[8, 1]]
23
24 Rule[VarList [], *[3 , 3], 9]
25 Rule[VarList [], *[3 , 4], DC[2, 1]]
26 Rule[VarList [], *[3 , 5], DC[5, 1]]
27 Rule[VarList [], *[3 , 6], DC[8, 1]]
28 Rule[VarList [], *[3 , 7], DC[1, 2]]
29 Rule[VarList [], *[3 , 8], DC[4, 2]]
30 Rule[VarList [], *[3 , 9], DC[7, 2]]
31
32 Rule[VarList [], *[4 , 4], DC[6, 1]]
33 Rule[VarList [], *[4 , 5], DC[0, 2]]
34 Rule[VarList [], *[4 , 6], DC[4, 2]]
35 Rule[VarList [], *[4 , 7], DC[8, 2]]
36 Rule[VarList [], *[4 , 8], DC[2, 3]]
37 Rule[VarList [], *[4 , 9], DC[6, 3]]
38
39 Rule[VarList [], *[5 , 5], DC[5, 2]]
40 Rule[VarList [], *[5 , 6], DC[0, 3]]
41 Rule[VarList [], *[5 , 7], DC[5, 3]]
42 Rule[VarList [], *[5 , 8], DC[0, 4]]
43 Rule[VarList [], *[5 , 9], DC[5, 4]]
44
45 Rule[VarList [], *[6 , 6], DC[6, 3]]
46 Rule[VarList [], *[6 , 7], DC[2, 4]]
47 Rule[VarList [], *[6 , 8], DC[8, 4]]
48 Rule[VarList [], *[6 , 9], DC[4, 5]]
49
50 Rule[VarList [], *[7 , 7], DC[9, 4]]
51 Rule[VarList [], *[7 , 8], DC[6, 5]]
52 Rule[VarList [], *[7 , 9], DC[3, 6]]
53
54 Rule[VarList [], *[8 , 8], DC[4, 6]]
55 Rule[VarList [], *[8 , 9], DC[2, 7]]
56
57 Rule[VarList [], *[9 , 9], DC[1, 8]]
58
59 Rule[VarList [m,n], *[m, n], *[n, m]]

B Rule Sets 145

B.3 NatAddition

Rule set NatAddition can be used to define addition of succ-objects in terms of
rewrite rules. It does not depend on any other rule set and contains in total only
two rules.

1 # MAKE_NOTHING
2 Rule[VarList [m, n], +[m, succ[n]], succ [+[m, n]]]
3 Rule[VarList [m], +[m, 0], m]

B.4 NatMultiplication

Rule set NatMultiplication can be used to define multiplication of succ-objects
in terms of rewrite rules. It depends on rule set NatAddition and contains two
new rules, making in total only four rules.

1 Needs [NatAddition .txt]
2 # MAKE_NOTHING
3 Rule[VarList [m, n], *[m, succ[n]], +[*[m, n], m]]
4 Rule[VarList [m], *[m, 0], 0]

B.5 NatSum

Rule set NatSum can be used to define summation of the first n Natural numbers,
represented as succ-objects, in terms of rewrite rules. It depends on rule set
NatAddition and contains two new rules, making in total four rules.

1 Needs [NatAddition .txt]
2 # MAKE_NOTHING
3 Rule[VarList [], Sum [0] , 0]
4 Rule[VarList [m], Sum[succ[m]], +[succ[m], Sum[m]]]

B.6 PolyAddition

Rule set PolyAddition can be used to define addition of univariate polynomials
in terms of rewrite rules. Polynomials have to be represented in the following way:

B Rule Sets 146

If f is defined as

f =
d∑
i=0

cix
i

then, in order to be treated correctly by this rule set, f has to be written as

Poly[c0, Poly[c1, ... Poly[cd, 0]...]]

and the coefficients ci have to be represented as Int-objects.
This rule set depends on rule set Addition and contains three new rules, making
in total 64 rules. Note that the rules from Addition are not included at the
beginning, but at the very end.

1 # MAKE_NOTHING
2 Rule[VarList [c1 ,c2 ,p2], +[Poly[c1 ,Int [0 ,0]] , Poly[c2 ,p2]], Poly [+[c1 ,c2], p2]]
3 Rule[VarList [c1 ,c2 ,p1], +[Poly[c1 ,p1], Poly[c2 ,Int [0 ,0]]] , Poly [+[c1 ,c2], p1]]
4 Rule[VarList [p1 ,p2 ,c1 ,c2], +[Poly[c1 ,p1], Poly[c2 ,p2]], Poly [+[c1 ,c2], +[p1 ,p2]]]
5 Needs [Addition .txt]

B.7 Sorting

Rule set Sorting can be used to sort arbitrary sequences of Natural numbers,
represented as succ-objects, where the sequences do not have holes: Every number
between the sequence-minimum and -maximum has to be part of the sequence as
well. Otherwise, the result is not necessarily sorted.
This rule set does not depend on any other rule set and contains in total 2 rules.

1 # MAKE_NOTHING
2 Rule[VarList [h_ , c_ , t_ , a], sort[h_ , succ[a], c_ , a, t_],
3 sort[h_ , a, c_ , succ[a], t_]]
4 Rule[VarList [x_], sort[x_], sorted [x_]]

B.8 SequentCalculus

Rule set SequentCalculus can be used to determine the truth value of proposi-
tional formulae. A well-formed (w. r. t. this rule set) propositional formula is an
expression where only function symbols not with arity 1, and and, or, impl and
equiv with arity 2 occur. Constants TRUE and FALSE are used to represent the
two truth values, all other constants are regarded as propositional variables.

B Rule Sets 147

This rule set does not depend on any other rule set and contains in total 16 rules.

1 # MAKE_NOTHING
2
3 // initialization
4 Rule[VarList [A], prove [A], prooftree [proofsit [kb[], goal[A]]]]
5
6 // terminal situation : proofsit proved
7 Rule[VarList [rest_ , kb1_ , kb2_ , goal1_ , goal2_ , A],
8 prooftree [proofsit [kb[kb1_ ,A,kb2_],goal[goal1_ ,A, goal2_]], rest_],
9 prooftree [rest_]]

10
11 // terminal situation : FALSE in kb
12 Rule[VarList [rest_ , kb1_ , kb2_ , goal_],
13 prooftree [proofsit [kb[kb1_ ,FALSE ,kb2_],goal[goal_]], rest_],
14 prooftree [rest_]]
15
16 // terminal situation : TRUE in goal
17 Rule[VarList [rest_ , kb_ , goal1_ , goal2_],
18 prooftree [proofsit [kb[kb_],goal[goal1_ ,TRUE , goal2_]], rest_],
19 prooftree [rest_]]
20
21 // not[A] in kb
22 Rule[VarList [rest_ , kb1_ , kb2_ , goal_ , A],
23 prooftree [proofsit [kb[kb1_ ,not[A],kb2_],goal[goal_]], rest_],
24 prooftree [proofsit [kb[kb1_ ,kb2_],goal[A, goal_]], rest_]]
25
26 // not[A] in goal
27 Rule[VarList [rest_ , kb_ , goal1_ , goal2_ , A],
28 prooftree [proofsit [kb[kb_],goal[goal1_ ,not[A], goal2_]], rest_],
29 prooftree [proofsit [kb[A,kb_],goal[goal1_ , goal2_]], rest_]]
30
31 // and[A,B] in kb
32 Rule[VarList [rest_ , kb1_ , kb2_ , goal_ , A, B],
33 prooftree [proofsit [kb[kb1_ ,and[A,B],kb2_],goal[goal_]], rest_],
34 prooftree [proofsit [kb[A,B,kb1_ ,kb2_],goal[goal_]], rest_]]
35
36 // or[A,B] in goal
37 Rule[VarList [rest_ , kb_ , goal1_ , goal2_ , A, B],
38 prooftree [proofsit [kb[kb_],goal[goal1_ ,or[A,B], goal2_]], rest_],
39 prooftree [proofsit [kb[kb_],goal[A,B,goal1_ , goal2_]], rest_]]
40
41 // impl[A,B] in goal
42 Rule[VarList [rest_ , kb_ , goal1_ , goal2_ , A, B],
43 prooftree [proofsit [kb[kb_],goal[goal1_ ,impl[A,B], goal2_]], rest_],
44 prooftree [proofsit [kb[A,kb_],goal[B,goal1_ , goal2_]], rest_]]
45
46 // equiv [A,B] in kb
47 Rule[VarList [rest_ , kb1_ , kb2_ , goal_ , A, B],
48 prooftree [proofsit [kb[kb1_ , equiv [A,B],kb2_],goal[goal_]], rest_],
49 prooftree [proofsit [kb[kb1_ ,kb2_ ,impl[A,B],impl[B,A]], goal[goal_]], rest_]]
50
51 // or[A,B] in kb
52 Rule[VarList [rest_ , kb1_ , kb2_ , goal_ , A, B],
53 prooftree [proofsit [kb[kb1_ ,or[A,B],kb2_],goal[goal_]], rest_],
54 prooftree [proofsit [kb[A,kb1_ ,kb2_],goal[goal_]],
55 proofsit [kb[B,kb1_ ,kb2_],goal[goal_]], rest_]]
56
57 // and[A,B] in goal
58 Rule[VarList [rest_ , kb_ , goal1_ , goal2_ , A, B],
59 prooftree [proofsit [kb[kb_],goal[goal1_ ,and[A,B], goal2_]], rest_],
60 prooftree [proofsit [kb[kb_],goal[A,goal1_ , goal2_]],
61 proofsit [kb[kb_],goal[B,goal1_ , goal2_]], rest_]]

B Rule Sets 148

62
63 // impl[A,B] in kb
64 Rule[VarList [rest_ , kb1_ , kb2_ , goal_ , A, B],
65 prooftree [proofsit [kb[kb1_ ,impl[A,B],kb2_],goal[goal_]], rest_],
66 prooftree [proofsit [kb[kb1_ ,kb2_],goal[A, goal_]],
67 proofsit [kb[B,kb1_ ,kb2_],goal[goal_]], rest_]]
68
69 // equiv [A,B] in goal
70 Rule[VarList [rest_ , kb_ , goal1_ , goal2_ , A, B],
71 prooftree [proofsit [kb[kb_],goal[goal1_ , equiv [A,B], goal2_]], rest_],
72 prooftree [proofsit [kb[kb_],goal[impl[A,B],goal1_ , goal2_]],
73 proofsit [kb[kb_],goal[impl[B,A],goal1_ , goal2_]], rest_]]
74
75 // terminal situation : disproved
76 Rule[VarList [head , rest_], prooftree [head , rest_], disproved]
77
78 // terminal situation : proved
79 Rule[VarList [], prooftree [], proved]

B.9 SC

SC cannot be used together with the programs of this thesis, but rather together
with the rewriting-system Maude ([2]). Just as rule set SequentCalculus, SC
consists of rules (more precisely: equations) that define the propositional se-
quent calculus. Moreover, it was attempted to be as close as possible to rule
set SequentCalculus and therefore the order and meaning of the equations was
left unchanged. For a thorough description of the syntax and semantics of modules
in Maude let me refer to [7].

One interesting aspect of the following listing is the way how sequence variables in
SequentCalculus are transformed into individual variables in SC: The knowledge
base in a proof situation, for instance, is nothing else than a sequence of formu-
lae, built from the binary operator _ _. This operator is both associative and
commutative, which means that in the equations one can always assume that the
formula one wants to have a look at is the very first one, even if this is not the
case. Maude is smart enough to realize, due to the operator’s attributes, that the
order of formulae does not matter.

1 fmod SC is
2 sorts Formula FList ProofSit SList .
3 subsort Formula < FList .
4 subsort ProofSit < SList .
5
6 op a : -> Formula .
7 op b : -> Formula .
8 op t : -> Formula .
9 op f : -> Formula .

10 op not_ : Formula -> Formula .
11 op _and_ : Formula Formula -> Formula .
12 op _or_ : Formula Formula -> Formula .

B Rule Sets 149

13 op _impl_ : Formula Formula -> Formula .
14 op _equiv_ : Formula Formula -> Formula .
15
16 op _ _ : FList FList -> FList [assoc comm] .
17 op _>_ : FList FList -> ProofSit .
18 op _;_ : SList SList -> SList [assoc comm] .
19 op prove : Formula -> SList .
20 op proved : -> SList .
21 op disproved : -> SList .
22
23 vars G H : Formula .
24 vars L1 L2 : FList .
25 var P : SList .
26
27 eq prove (G) = (t > G f) ; proved .
28 eq (G L1 > G L2) ; P = P .
29 eq (f L1 > L2) ; P = P .
30 eq (L1 > t L2) ; P = P .
31 eq (not(G) L1 > L2) ; P = (L1 > G L2) ; P .
32 eq (L1 > not(G) L2) ; P = (G L1 > L2) ; P .
33 eq ((G and H) L1 > L2) ; P = (G H L1 > L2) ; P .
34 eq (L1 > (G or H) L2) ; P = (L1 > G H L2) ; P .
35 eq (L1 > (G impl H) L2) ; P = (G L1 > H L2) ; P .
36 eq ((G equiv H) L1 > L2) ; P = (L1 (G impl H) (H impl G) > L2) ; P .
37 eq ((G or H) L1 > L2) ; P = (G L1 > L2) ; (H L1 > L2) ; P .
38 eq (L1 > (G and H) L2) ; P = (L1 > G L2) ; (L1 > H L2) ; P .
39 eq ((G impl H) L1 > L2) ; P = (L1 > G L2) ; (H L1 > L2) ; P .
40 eq (L1 > (G equiv H) L2) ; P = (L1 > (G impl H) L2) ; (L1 > (H impl G) L2) ; P .
41 eq (L1 > L2) ; P = disproved [owise] .
42 endfm

Bibliography

[1] C++ Reference. http://www.cplusplus.com.

[2] The Maude System. http://maude.cs.uiuc.edu.

[3] Wolfram Mathematica. http://www.wolfram.com/mathematica/.

[4] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univer-
sity Press, 1999.

[5] M. Bezem, J.W. Klop, and Roel de Vrijer. Term Rewriting Systems. Num-
ber 55 in Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 2003.

[6] Alonzo Church. Introduction to Mathematical Logic. Princeton Landmarks in
Mathematics and Physics. Princeton University Press, 1996.

[7] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-
Oliet, José Meseguer, and Carolyn Talcott. Maude Manual (Version 2.6),
2011. http://maude.cs.uiuc.edu/maude2-manual/maude-manual.pdf.

[8] S. Eker. Term Rewriting with Operator Evaluation Strategy. In In 2nd Inter-
national Workshop on Rewriting Logic and its Applications (WRLA’98), vol-
ume 15 of Electronic Notes in Theoretical Computer Science. Elsevier, 1998.

[9] Donald E. Knuth. The Art of Computer Programming: Fundamental Algo-
rithms, volume 1. Addison-Wesley, third edition, 1997.

[10] T. Kutsia and B. Buchberger. Predicate Logic with Sequence Variables and
Sequence Function Symbols. In Andrea Asperti, Grzegorz Bancerek, and
Andrzej Trybulec, editors, Proceedings of the 3rd International Conference
on Mathematical Knowledge Management, MKM’04, volume 3119 of Lecture
Notes in Computer Science, pages 205–219, Bialowieza, Poland, Sep 19–21
2004. Springer Verlag.

[11] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag, 2002.

150

BIBLIOGRAPHY 151

[12] Christina Paul. A Rewriting System in C++. Master’s thesis, JKU Linz,
2009.

[13] Guy L. Steele. Common Lisp the Language. Digital Press, second edition,
1990.

[14] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, third
edition, 1997.

[15] F. Winkler. Polynomial Algorithms in Computer Algebra. Texts and Mono-
graphs in Symbolic Computation. Springer-Verlag Wien New York, first edi-
tion, 1996.

	Introduction
	Maude

	Basic Definitions
	Formal Definition of Rewriting
	Expressions
	Subexpressions
	Position of Objects

	Integers and Natural Numbers
	Rewrite Rules
	Rule Sets
	Sequence Variables
	Trees
	Mappings
	Type- and Arity Preserving Mappings
	The Notation of Mappings
	The Number of Mappings

	General Implementation Documentation
	Symbols
	Implementation of Trees
	Class Expression
	Class Constant
	Class Function
	Class Variable

	Implementation of Rules
	Parsing Expressions and Rules
	Rule-Application Strategy

	Version 1: The Interpreter
	Algorithms and Implementation
	Implementation Details
	Loading and Storing a Rule
	The Matching Algorithm
	The Rewriting Algorithm

	How To Use ``Interpreter''
	General Overview
	Input Files

	An Example
	Step 1: Creating References
	Step 2: Copying the rhs-Tree
	Step 3: Deleting Unused Vertices

	Version 2: The Compiler
	Implementation of the Compiled Programs
	Algorithms and Implementation of the Compiler
	Class Rule
	Constructing Function match
	Commands
	Constructing Function rewrite

	How To Use ``Compiler''
	An Example

	Version 3: The Compiler with Sequence Variables
	Implementation of the Compiled Programs
	Algorithms and Implementation of the Compiler
	Commands
	Constructing Function match
	Constructing Function rewrite

	How To Use ``Compiler/SV''
	An Example

	Tests And Timing Experiments
	Comparing the Different Versions
	General Parameter Settings
	Rule Set Addition
	Rule Set Multiplication
	Rule Set NatAddition
	Rule Set NatMultiplication
	Rule Set NatSum
	Rule Set PolyAddition
	Rule Set SequentCalculus
	Summary

	Comparing Old (Constructive) and New (Destructive) Concept
	General Parameter Settings
	Rule 1
	Rule 2
	Rule 3
	Rule 4
	Rule 5
	Summary

	Comparing ``Compiler/SV'' to Mathematica

	Conclusion
	Complexity Analysis
	Arity Preserving
	Type Preserving
	Complexity: Conclusion

	Future Work
	Program Features
	Implementation

	Special commands
	Closing the Program
	Maximum Number of Rewriting Steps
	Rewriting the previous Result
	Integers and Natural Numbers
	Tracing the Rewriting Process
	Rewriting Strategy
	Rewriting an Input File
	Rewriting Algorithm*
	Performing Timing Experiments
	Printing all Symbols
	Printing all Constants*
	Printing all Rule Sets*
	Printing all Rules*
	Printing a single Rule*

	Rule Sets
	Addition
	Multiplication
	NatAddition
	NatMultiplication
	NatSum
	PolyAddition
	Sorting
	SequentCalculus
	SC

